
An Annual Progress Report
N Contract No. N00014-86-K-0245

October 1, 1989 - September 30, 1990

THE STARLITE PROJECT

Nl Applied Math and Computer Science
N Dr. James G. Smith

Program Manager, Code 1211
I

Computer Science Division
Dr. Gary Koob

Program Manager, Code 1133

Submitted to:

Director
Naval Research Laboratory

Washington, DC 20375

Attention: Code 2627

Submitted by:

R. P. Cook
Associate Professor

S. H. Son
Assistant Professor

Report No. UVA/525410/CS91/104
September 1990

SCHOOL OF

ENGINEERING I DEPARTMENT OF COMPUTER SCIN('

& APPLIED SCIENCE
University of Virginia
Thornton Hall
Charlottesville, VA 22903

UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginias School of Engineering and Applied Science has an undergraduate en-
rollment of approximately 1,500 students with a graduate enrollment of approximately 600. There are 160
faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These
range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and Aero-

space to newer, more specialized fields of Applied Mechanics, Biomedical Engineering, Systems Engi-
nee'r-g. Materials Science. Nuclear Engineering and Engineering Physics, Applied Mathematics and Com-
puter Science Within these disciplines thee are well equipped laboratories for conducting highly
specialized research. All departments offer tire doctorate; Biomedical and Materials Science grant ,nly

graduate degrees. In addition. courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 2.000 faculty and a total of full-time student
enrollment of about 17.000), also offers professional degrees under the schools of Architecture, Law,
Medicine. Nursing, Commerce, Business Administration, and Education. In addtion, the College of Arts

and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engi-
neering research program. The School of Engineering and Applied Scie.nce is an integral part of this
University community which provides opportunities fcr interdisciplinary work in pursuit of the basic goals
of education, research, and public service

i

An Annual Progress Report
Contract No. N00014-86-K-0245

October 1, 1989 - September 30, 1990

THE STARLITE PROJECT

Applied Math and Computer Science
Dr. James G. Smith

Program Manager, Code 1211

Computer Science Division /77
Dr. Gary Koob

Program Manager, Code 1133 6

Submitted to:

Director
Naval Research Laboratory

Washington, DC 20375

Attention: Code 2627

Submitted by:

R. P. Cook
Associate Professor

S. H. Son
Assistant Professor

Department of Computer Science
SCI 1OOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

Report No. UVA/5254 lO)/CS91/104 Copy No.Jf
Scpteml, -r 199)

REPORT DOCUMENTATION PAGE OmApve

w84~ ~~~~~~~~~~~~~~~~~0 th1 f44 WW.84 0W'98Wt4EWfq1 OI!Ol0 U-"flt444 ford comt.w. -9 t,
7

04q ? k4"Wi 8 W1 0q4 eels 0494
at ~ 4. K~ths Wqtlt~tl404r~tiu'q41)1OwOfi t WInqot W . :If l zd .Cw.OMeftirsl@ 04 .rthis.04 wm 4"#-at# Of WWrt 4 1 'W" Of IN

-9 ow 2WQ . ASwqwn.. VA 2220ZO 2.id4 10 tilW O Of Clm4.qe" tt noi swq~t. r~o.-..o Afos" rm OWY~ (1O04 1" .v4eh.1. OC 20113.

IAGENCY USE ONLY (Leavo biank) 2. REPORT IJATE 3. REPORT TYPE AND DATES COVERED
I I IAnnual: Oct. 1, 1989 - Sent. 30, 19)0

4. TITLE AND SUBT1TU 5. FUNDING NUMBERS

The StarLite Project

-C-AUTOR(S)N00014-86-K-0245 P00002

R. P. Cook, S. H. Son

7. PEAORjI* ORGANIZATION NAME(S) AND ADORESSIES) 8. PERFORMING ORGANIZATION~
Uniesty of Virginia REPORT NUMBER
Department of Computer Science
Thornton Hall
r :- _'ottesville, VA 22901 UVA/5254iQ/CS9l/104

9. SPONdSORING/MONITORJNG AGENCY NAME(S) AND ADORESSIES) 10. SPONSORING/ MONITORING
Office of Naval Research Resident Representative AGENCY REPORT NUMBER

818 Connecticut Avenue, N. W. Eighth Floor
Washington, DC 20006

11. SUPPLLMENTARY NOTES

12a. OLSTRIBUIINIAVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Distribution unlimited

13. ABSTRACT 0MAzIMUM 200 WOIS)

The StarLite Project has the goal of constructing a program
library for real-time applicati"ons. The initial focus of Lhe
project is on operating system and database support. The project
also involves the construction of a prototyping environment that
supports experimentation with concurrent and distributed algorithms
in a host environment before down-loading to a target system for
performance testing.

The components of the project include a Modula-2 compiler, a
symbolic Modula-2 debugger, an interpreter/ runt ime package, the
Pheonix operating system, the meta-file system, a visual simulation
package, a database system, and documentation. ,

!A. SUBJECT TERMS 15. NUMBER OF PAGE$

StarLite Project, Modula-2 compiler, Modula-2 debugger, 16. PRICE CODE
Pheonix orieratina systemn

17 SECURITY CLASSI1FICATION 1a. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
Of REPORT OF THIS PAGE OF ABISTRACT
Unclassified Unclassified Unclassified ________L_______

NSN 740-0-2605500Standard Form 298 1890iC#4 araftt
NSN 7540.01.2Otsv00 .w n. " Att £5611 I)$-I'.s

TABLE OF CONTENTS

1. Productivity M easures 1

2. Summary of Technical Progress 2

2.1 The StarLite Environment 2

2.2 Database Systems 2

2.2.1 Scheduling and Concurrency Control 3
2.2.2 Integration of a Relational Database with ARTS 4
2.2.3 Development of a Database Prototyping Tool 5

2.3 Operating Systems 6

3. Honors, Publications, Presentations 8

H onors .. 8

Refereed Publications 8

Unrefereed Publications , 10

Presentations .. 11

Students ... 11

4. Transitions and DOD Interactions 12

5. Software and Hardware Prototypes 14

Appendix

StarLite: An Integrated Environment for Distributed Real-Time Software

Performance Evaluation of Real-Time Locking Protocols using a Distributed Software
Prototyping Environment

t ii

Robert P. Cook and Sang H. Son
University of Virginia
(804) 98--2215
cook or son@cs.virginia.edu
The StarLite Project
N00014-86-K-0245
10/1/89 - 9/30/90

1. Productivity Measures

* Refereed papers submitted but not yet published: 8

" Refereed papers published: 11

" Unrefereed reports and articles: 5

" Books or parts thereof ;ubmitted but not vet published: 2

" Books or parts thereof published: I

*Patents filed but not yet granted: 0

* Patents granted: 0

* Invited presentations: 4

*Contributed presentations: 9

" Honors received: 12

" Prizes or awards received: 0

* Promotions obtained: 0

eGraduate students supported: 12

" Post-Docs supported: 0

" Minorities supported: 2

I

Robert P. Cook and Sang H. Son
University of Virginia
(804) 982-2215
cook or son@cs.virginia.edu
The StarLite Project
N00014-86-K-0245
10/1/89 - 9/30/90

2. Summary of Technical Progress

This section contains a summary of technical progress on the StarLite Project.

2.1. The StarLite Environment
The StarLite integrated programming environment is designed to support research

in real-time database, operating system, and network technology. The StarLite library
synthesizes intellectual effort in the form of software components that can be transferred,
examined, learned, or experimented with by the community at large. Thus, an
abstraction, such as sorting, may be associated with interfaces, implementations,
performance ratings, text, hypertext, video animations, sample programs, test cases,
formal specifications, modification history, etc.

StarLite has been used to implement a real-time UNIX (Phoenix), a distributed
database system, a parallel programming interface identical to WorkCrews used on the
DEC SRC FireFly, and network protocols. It has also been used to support graduate and
undergraduate courses in operating systems and database technology. The StarLite
components include aModula-2 compiler, ,in interpreter-based runtime, a SunView/X
graphics package, a viewer, a simulation package, movie system, profiler, browser,
Prolog interpreter, relational database system, and a software reuse library (250 modules,
100,000 lines). New tools under development include a modelling system and an
algorithm animation package.

Over the past year, we have converted all the tools to run under X as well as
SunView. In fact, the conversion was designed so that all future graphics programs
could be run under either windowing system without modification. Significant effort was
invested in addressing the performance problems associated with running the system on
an interpreter. After a number of experiments, we designed code filters to translate
MCODE object modules to equivalent native code modules. The native code modules
can be intermixed with MCODE modules arbitrarily and the generated code is defined in
such a way that tools, such as the debugger, can be used opaquely. Performance
experiments on the M680X0 filter indicate a speed-up of 10-20 and, on the SPARC filter
from 15-40, over MCODE.

2.2. Database Systems

The research effort during October 1989 to September 1990 was concentrated in
three areas: investigating new techni(Lues for real-time database systems, integrating a
relational database system with the real-time operating system kernel ARTS, and

2

developing a message-based database prototyping environment for empirical study.

2.2.1. Scheduling and Concurrency Control

Since scheduling and concurrency control is critical for satisfying timing constraints
of reaJ-time transactions, we have investigated new algorithms for transaction scheduling
in real-time database systems. Real-time task scheduling methods can be extended for
real-time transaction scheduling while concurrency control protocols are still needed for
operation scheduling to maintain data consistency. However, the integration of the two
mechanisms in real-time database systems is not straightforward. The general approach
is to utilize existing concurrency control protocols, especially 2PL, and to apply time-
critical transaction scheduling methods that favor more urgent transactions. Such
approaches have the inherent disadvantage of being limited by the concurrency control
method upon which they are based, since all existing concurrency control methods
synchronize concurrent data access of transactions by the combination of two measures:
blocking and roll-backs of transactions. Both are barriers to time-critical scheduling. In
real-time database systems, blocking may cause priority inversion when a high priority
transaction is blocked by lower priority transactions. The alternative is to abort the low
priority transactions if they block a high priority transaction. This wastes the work done
by the aborted -transactions arid in tim also has a negative effect on time-critical
scheduling. One of the fundamental problems of real-time database systems is to
develop real-time transaction scheduling protocols that maximize both concurrency and
resource utilization subject to three constraints at the same time: data consistency,
transaction correctness, and transaction deadlines.

The priority ceiling protocol, which is basically a task scheduling protocol for real-
time operating systems, has been extended to the real-time database system. It is based
on 2PL and employs only blocking, not roll-back, to solve conflicts. This makes it a
conservative approach. We have investigated methods to apply the priority ceiling
protocol as a basis for real-time locking protocol in a distributed environment. One
approach to implement the priority ceiling protocol in a distributed environment is to use
a global ceiling manager at a specific site. The advantage of this approach is that the
temporal consistency of the database is guaranteed, since every data object maintains
most up-to-date value. While this approach ensures consistency, holding locks across the
network is not very attractive. Due to communication delay, locking across the network
will only enforce the processing of a transaction using local data objects to be delayed
until the access requests to the remote data objects ire granted. This delay for
synchronization, combined with the low degree of concurrency due to the strong
restrictions of the priority ceiling protocol, is counter-productive in real-time database
systems.

An alternative to the global ceiling manager approach is to have replicated copies of
data objects. An up-to-date local copy is used as the primary copy, and remote copies are
used as the secondary read-only copies. In this approach, ve assume a single writer and
multiple readers model for distributed data objects. This is a simple model that
effectively models applications such as distributed tracking in which each radar station
maintains its view and makes it available to other sites in the network.

We have investigated the performance characteristics of the global ceiling approach
and the local ceiling approach with replication in a distributed environment. The real-

3

time database system we have prototyped for the experiment consists of three sites with
fully interconnected communication network. Our performance results have illustrated
the superiority of the local ceiling approach over the global ceiling approach, at least
under one representative distributed real-time database and transaction model. From the
results of this experimentation, we found that, even with the potential problem of
temporal inconsistency (i.e., reading out of date values), the local ceiling approach is a
very powerful technique for real-time concurrency control in distributed database
systems. Some of our findings have been presented at the Real-Time Systems session of
the International Conference on Distributed Computing Systems (June 1990).

In addition to investigating the priority ceiling protocols, we have been developing
more practical real-time concurrency control protocols for distributed database systems.
Our approach is based on the idea of adjusting the serialization order of active
transactions dynamically, by relaxing the relationship between the serialization order and
the past execution history.

One of the protocols we have been developing is a priority-dependent locking
protocol, which has a flavor of both locking and optimistic approach. Our goal is to
provide a locking mechanism that adjusts the serialization order, making it possible for
transactions with higher priorities to be executed first so that high priority transactions
are never blocked by uncommitted low priority transactions while lower priority
transactions may not have to be aborted even in face of conflicting operations.

The execution of each transaction is divided into three phases: the read phase, the
wait phase and the write phase. During the read phase, a transaction is executed, only
reading from the database and writing to its local workspace. After it completes, it waits
for its chance to commit in the wait phase. If it is committed, it switches into the write
phase during which it makes all its updates permanent in the database. A transaction in
any of the three phases is called an active transaction. If an active transaction is in the
write phase, then it is committed and writing into the database.

Each lock contains the priority of the transaction holding the lock as well as other
usual information. The locking protocol is based on the principle that high priority
transactions should complete before lower priority transactions. This principle implies
that if two transactions conflict, the higher priority transaction should precede the lower
priority transaction in the serialization order. If a low priority transaction does complete
before a high priority transaction, it is required to wait until it is sure that its commitment
will not lead to the abort of a higher priority transaction.

2.2.2. Integration of a Relational Database with ARTS

A database system must operate in the context of available operating system
services. In other words, database operations need to be coherent with the operating
system, because correct functioning and timing behavior of database control algorithms
depends on the services of the underlying operating system. As pointed out by
Stonebraker, operating system services in many systems are not appropriate for support
of database functions. In many areas such as buffer management, recovery, and
consistency control, operating system facilities have to be duplicated by database systems
because they are too slow or inappropriate. An environment for database systems
development, therefore, must provide facilities to support operating system functions and
Integrate them with database systems for experimentation.

4

The ARTS is a real-time operating system kernel being developed by the
researchers at the Carnegie-Mellon University. The goal of the ARTS OS is to provide a
predictable, analyzable, and reliable distributed real-time computing environment. We
have been working closely with the ARTS developers and Pat Watson at the IBM
Federal Systems Division to develop a relational real-time database system, called
RTDB, and to integrate it with ARTS. Initially the RTDB runs on UNIX, where all
relations are stored as files on disk. It was designed as a single-user program, and hence
the code was not necessarily re-entrant. Many changes were made to have the RTDB
running on the ARTS in a server-client mode in which the server accepts requests from
multiple clients possibly on different machines. Our initial efforts have resulted in a
single-threaded server that can accept requests from multiple clients. Each client is an
object that submits a series of requests to access the database.

We have developed two different kinds of clients for the RTDB. One is an
interactive command parser/request generator that makes requests to the server on behalf
of the user. This client looks and behaves just like the single-user database manager
running on Unix. It is possible to run the client without knowing that any interaction
between server and client is occurring. The other client is a transaction generating client.
It represents a real-time process that needs to make database access requests.

We are investigating methods to have a server with multiple threads. The ARTS
kernel supports lightweight processes which means that a single object can have many
active control threads at the same time. This is implemented using shared memory
address space for the threads. A server that takes advantage of this feature can be
designed in a number of different ways. There can be threads that accept only requests
for a certain type of operation; or there can be threads that accept requests for any
operation of a certain priority; or there can be threads that accept any operation of any
priority -- this would be just like having more than one complete server. In addition, we
are expanding the functionalities that, can be provided by the real-time relational database
manager.

2.2.3. Development of A Database Prototyping Tool
A prototyping tool to implement database technology should be flexible and

organized in a modular fashion to provide enhanced experimentation capability. A user
should be able to specify system configurations such as the number of sites, network
topology, the number and locations of processes, the number and locations of resources,
and the interaction among processes. We use the client/server paradigm for process
interaction in our prototyping tool. The system consists of a set of clients and servers,
which are processes that cooperate for the purpose of transaction processing. Each server
provides a service to the clients of the system, where a client can request a service by
sending a request message to the corresponding server. Our method for developing a
database prototyping environment has been presented at the International Conference on
Systems Integration (April 1990).

We have enhanced the previous version of the prototyping tool running on a Sun
workstation, The current prototyping tool provides concurrent transaction execution
facilities, including two-phase locking and timestamp ordering as underlying
synchronization mechanisms. A series of experiments have been performed to test the
correctness of the design and validity of the current implementation of those two

synchronization mechanisms. As a general rule, we found that transaction response time,
in both mechanisms, increases with the increase of the degree of data distribution and the
number of conflicts. The current prototyping tool also provides a multiversion data
object control mechanism.

From a series of experiments, we found that the performance of a multiversion
distributed database system is quite sensitive to the size of read-sets and write-sets of
transactions. A multiversion database system outperforms the corresponding single
version system when the size of the-read-sets of transactions is larger than the size of the
write-sets of update transactions. The ratio between read-only and update transactions
also affects system performance, but this parameter is not as sensitive as the set size.
Some of our findings have been presented at the International Conference on Data
Engineering (February 1990).

2.3. Operating Systems

The Phoenix OS portion of the project encompasses research involving better
operating system structuring techniques and better algorithms. For example, the system
already includes many of the real-time enhancements proposed in the Lynx OS. Phoenix
is not a kernel, such as the Spring system, but a full-function OS.

Interfaces are important because they can be standardized and because they are
designed to outlive implementations and machine architectures. It is now widely
accepted that the use of a procedural interface, such as the C library for UNIX, is the
most advantageous method for presenting an operating system's functionality to an end
user. Such an interface can be machine and language invariant. These are desirable
properties given the diversity of hardware/software used by today's defense contractors.

There are two design options to choose from as the basis for an interface standard:
flat or layered. An operating system with a flat interface, such as UNIX, is essentially
closed; that is none of the interfaces used in the implementation can be accessed. Flat
interfaces are inflexible and typically trade performance and control for generality. A
layered interface specification, such as the OSI definition of ISO for computer networks,
overcomes the deficiencies of the traditional, flat operating system interface designs by
allowing the application engineer to choose an interface layer that most closely fits the
problem to be solved. For example, if UNIX were a layered design, it would be possible
for a database system to manipulate the operating system's buffer cache in a manner that
has long been requested by implementors.

Access to low-level interfaces can address the performance requirements of real-
time software. Another advantage of a layered design is that layers can be omitted to
save space. For example, if an application does not use files, the file system could be
omitted. It is also possible to implement layers in hardware to improve performance.
Open interfaces also support greater control over system actions for error recovery and
dynamic repair. The Phoenix operating system is based on a layered design with
standard interfaces.

Two of the research issues are how to partition the layers and how to define the
interfaces at each layer. To experiment with different options, we designed and
implemented a UNIX-compatible operating system according to the layering principles
defined by ISO. The Phoenix UNIX is proprietary in that it is not based upon nor does it

6

contain any code from other UNIX implementations. We have rewritten the system
several times to try different layering and implementation strategies. The long-term goal
of the StarLite project is to create an operating system generator that could automatically
select implementations from a module library based on specified application
requirements and a given target architecture. The first step toward achieving this goal is
to create a library of implementation modules suitable to support applications with severe
reliability requirements. The next phase of the StarLite project is creating such a library.

One of the prerequisites for experimenting with a library of operating system
components is having the ability to add and delete modules or services from what we
term a software backplane. Also, we felt that some composition mechanism is be
necessary to achieve the goal of creating an operating system generator.

The Phoenix composition mechanism eliminates unnecessary recompilations by
binding properties to processes dynamically. The method is object based but does not
support inheritance. Thus, the support code is small and fast. In Phoenix, there is only
one class of object, a process. Each process object can be composed of a limited number
of properties that can be connected to it in any order and at any time. When the
operating system boots up, each module has been statically linked to the code of the
modules that it depends on. However, each module dynamically connects its data type to
the process object using a low-level system call.

It is also possible to associate managers with properties. When a process object is
closed, the managers are notified one at a time so that the individual fields may be closed.
For example, the exit system call's implementation is unaware that there is a file system
associated with a process. When the manager of the file-system property is invoked as
the result of a process exit, it does its own cleanup by closing all open files.

Managers can also be used to monitor the actions on fields for fault detection
purposes. This is somewhat equivalent to the probe points used on hardware backplanes.

Management of resources is one of the most difficult problems to solve in order to
produce a full-function UNIX operating system that is capable of providing hard,
reliability guarantees. Most current UNIX implementations provide none. Deadlock
over internal resources can be eliminated using a number of methods. Our approach to
the resource contention problem is based on priority-ordered avoidance.

This technique requires that tasks with "hard" deadlines submit claims describing
future actions and timing requirements. The system then guarantees that the deadline
will be met as long as the task does not exceed its computation and resource limits and
neither the hardware nor software fail. Each process with "hard" deadlines must submit a
claim list identifying the resources to be used and the timing requirements. The system
then associates a data structure with each resource that restricts access by competing
processes during critical periods. The key to success is making the avoidance test fast
enough, which is achieved by using priority to totally order the necessary comparisons.

Two other areas in which we are performing experiments are a file system based on
fine-grained locking and the impact of multiprocessor technology on operating systems
design.

7

Robert P. Cook and Sang H. Son

University of Virginia
(804) 982-2215
cook or son@cs.virginia.edu
The StarLite Project

N00014-86-K-0245
10/1/89 - 9/30/90

3. Honors, Publications, Presentations

* Honors

* Cook, General Chairman, Seventh IEEE Workshop on Real-Time Software and
Operating Systems, Charlottesville, VA (1990).
e Cook, Program Committee, Eighth IEEE Workshop on Real-Time Software and
Operating Systems, Atlanta, GA (1991).
e Cook, Program Committee, Third Annual Workshop: Methods and Tools for Reuse,
Syracuse University, (1990).
* Cook, Site Visit Team, NSF lIP Program. Purdue University.
*Cook, Member U.S. TAG to ISO SC22/WG 13, Modula-2 Standard.
*Son, Program Committee Co-Chair, Workshop on Advanced Computing, (1990).
* Son, Program Committee, Sixth International Conference on Data Engineering, (1990).
e Son, Program Committee, Ninth Symposium on Reliable Distributed Systems, (1990).
*Son, Program Committee, ACM SIGMOD Conference on Management of Data (1990).
* Son, Session Chair, Ninth Symposium on Reliable Distributed Systems, Session on
Distributed Databases, (1990).
9 Son, Invited Paper, "Real-Time Database Systems: A New Challenge," IEEE Data
Engineering. Vol. 13, no. 4, Special Issue on Future Directions on Database Research,
December 1990 (to appear).
e Son, Invited Paper, "Prototyping Approach to Distributed Database Research,"
Database Review, Vol. 6, October 1990 (to appear).

* Refereed Publications

(1) Cook, R. P., "The StarLite Operating System," Operating Systems for Mission-
Critical Computing, Eds. K. Gordon, P. I lwang, A. Agrawala, ACM Press, (to
appear).

(2) Cook, R. P. and L. ltsu, "StarLite: A Softwarc Education Laboratory," Fourth SEI
Conference on Software Engineering Education, reprinted in Software Engineering
Education, Springer-Verlag Lecture Notes in Computer Science 423, Lionel E.
Deimel (Ed.), (April 1990).

8

(3) Cook, R. P. and H. Oh, "The StarLite Pioject, Frontiers 90 Conference on

Massively Parallel Computation, (to appear).

(4) Cook, R. P., "Modula-2," Encyclopedia of Computer Science, (to appear).

(5) L. Sha, R. Rajkumar, S. H. Son, and C. Chang, "A Real-Time Locking Protocol,"
IEEE Transactions on Computer-, (to appear).

(6) P. Shebalin, S. H. Son, and C. Chang, "An Approach to Software Safety Analysis
in Distributed Systems," Journal of Computer Systems Science and Engineering,
(to appear).

(7) S. H. Son, "Reconstruction of Distributed Databases," Journal of Computer
Systems Scienc,. and Engineering, Vol. 5, 1990 (to appear),

(8) Son, S. H., "An Adaptive Checkpointing Scheme for Distributed Databases with
Mixed Types of Transactions," IEEE Transactions on Knowledge and Data
Engineering, December 1989, pp 450-458.

(9) Son, S. H., "An Algorithm for Non-Interfering Checkpoints and its Practicality in
Distributed Database Systems," Inj'Ormation Systems, Vol. 14, No. 4, December
1989, pp 421-429.

(10) Son, S. H. and A. Agrawala, "Distributed Checkpointing for Globally Consistent
States of Databases," IEEE Transactions on Software Engineering, Vol. 15, No.
10, October 1989, pp 1157-1167.

(11) Y. Lin and S. H. Son, "Concurrency Control in Real-Time Databases by Dynamic
Adjustment of Serialization Order," 1 Ith Real-Time Systems Symposium, Orlando,
Florida, December 1990 (to appear).

(12) S. H. Son, "Scheduling Real-Time Traisactions," Eurornicro Workshop on 41-al-
Time Systems, Horsholm, Denmark, June 1990, pp 25-32.

(13) S. H. Son and C. Chang, "Performance Evaluation of Real-Time Locking Protocolb
using a Distributed Software Prototyping Environment," 10th International
Conference on Distributed Computing Systems, Paris, France, June 1990, pp 124-
131.

(14) S. H. Son and J Lee, "Scheduling Real-Time Transactions in Distributed Database
Systems," 7th IEEE Workshop on Real-Time Operating Systems and Software,
Charlottesville, Virginia, May 1990, pp 39-43.

(15) S. H. Son and R. Cook, "StarLite: An Environment for Prototyping and Integrated
Design of Distributed Real-Time Software," Second International Conference on
Compuier Integrated Manufacturing, Troy, New York, May 1990, pp 507-515.

(16) Son, S. H., "An Environment for Prototyping Real-Time Distributed Databases,"
International Conference on Systems Integration, Morristown, New Jersey, April
1990, pp 358 367.

9

(17) A. Grimshaw, J. Pfaltz, J. French, and S. H-. Son, "Exploiting Coarse Grained
Parallelism in Database Applications," International Conference on Databases,
Parallel Architectures, and Their Applications (PARBASE '90), Miami Beach,
Florida, March 1990, pp 510-512.

(18) Son, S. H. and N. Haghighi, "Performance Evaluation of Multiversion Database
Systems," Sixth IEEE International Conference on Data Engineering, Los
Angeles, California, Febntary 1990, pp 129-136.

(19) Son, S. H., "On Priority-Based Synchronization Protocols for Distributed Real-
Time Database Systems," IFACIIFIP Workshop on Distributed Databases in
Real-Time Control Budapest, Hungary, October 1989, pp 67-72.

(20) Son, S. H. and R. Cook, "StarLite: An Integrated Environment for Distributed
Real-Time Software," Software Engineering .ournal, (submitted).

(21) Son, S. H. and C. Chang, "On Priority-Based Locking Protocols for Distributed
Real-Time Database Systems," IEEE Transactions on Knowledge and Data
Engineering, (submitted).

(22) S. H. Son, M. Poris, and C. lannacone, "RTDB: An Experimental Database
Manager for Real-Time Systems," Seventh IEEE International Conference on Data
Engineering, (submitted).

e Unrefereed Publications

(23) Cook, R. P., "The StarLite Intellectual Reuse Project," Third Annual Workshop:
Methods & Tools for Reuse. CASE Center, Syracuse University, (June 1990).

(24) S. H. Son and Y. Lin, "Concurrency Control using Priority-Based Locking,"
Technical Report TR-90-13, Dept. of Computer Science, University of Virginia,
June 1990.

(25) S. H. Son and P. Wale, "Scheduling using Dynamic Priority in Real-Time
Database Systems," Technical Report TR-90-03, Dept. of Computer Science,
University of Virginia, March 1990.

(26) S. H. Son and S. Chiang, "Experimental Evaluation of a Concurrent Checkpointing
Algorithm," Technical Report TR-90-01, Dept. of Computer Science, University of
Virginia, January 1990.

(27) S. H. Son and C. Chang, "Performance Evaluation of Real-Time Locking Protocols
using a Distributed Software Prototyping Environment" Technical Report TR-89-
13, Dept. of Computer Science, University of Virginia, November 1989.

10

!

e Presentations

* Cook, The StarLite Project, University of Rochester.
e Son, presentation at the IFAC/IFIP Workshop on Distributed Databases in Real-Time
Control (Oct. 1989).
0 Son, invited talk at the Korea Information Science Society on real-time database
systems (Feb. 1990).
*Son, presentation at the Euromicro Workshop on Real-Time Systems (June 1990).

* Students

Anthony Burrell (Ph.D. student), real-time operating system scheduling
Shi-Chin Chiang (Ph.D. student), checkpointing in distributed database systems
Lee Hsu (Ph.D student), priority-based resource management
Young-Kuk Kim (Ph.D. student), real-time database managzers
Chris Koeritz(Ph.D. student), real-time file systems
Juhnyoung Lee (Ph.D. student), schedulers for real-time databases
Ying-Feng Oh (Ph.D. student), real-time multiprocessor operating systems
Jeremiah Ratner (Ph.D. student), synchronization protocols for real-time systems
Ambar Sarkar (Ph.D. student), real-time, fault-tolerant network protocols
Robert Beckinger (M.S. student), support for temporal information
David Duckworth (M.S. student), Modula-2 to C translator
Greg Fife (M.S. student), real-time, fault-tolerant broadcast protocols
Carmen lannacone (M.S. student), multi-thread real-time database server
Spiros Kouloumbis (M.S. student), replication control
Yi Lin (M.S. student), priority-based contention protocols
Marc Poris (M.S. student), integration of a database with real-time kernel
Alan Tuten (M.S. student), relational database extension for real-time systems
Prasad Wagle (M.S. student), dynamic priority scheduling
Richard McDaniel(B.S. student), prototyping environment

t 11

Robert P. Cook and Sang H. Son
University of Virginia

(804) 982-2215
cook or son@cs.virginia.edu
The StarLite Project
N00014-86-K-0245
10/1/89 - 9/30/90

4. Transitions and DOD Interactions

e Cook, StarLite installed at the University of Rochester, San Francisco State, and the
University of Pennsylvania.

* Cook and Waxman, Presentation to Raytheon Corporation, Executable Specifications,
(Sept. 1990).

* Cook and Waxman, Research in the Establishment of a Simulatable Link Between an
Operational Specification and a Performance Model, S49,587, funded by Hughes Aircraft
Company, (June 1990).

e Cook and Weaver, Executable Specifications for Standards and Conformance Test
Development, Proposal to Mr. David Hollenbeck, Space and Naval Warfare Systems
Command, (July 1990).

* Cook and Son, Systems Support for an Ultra-Reliable Underwater Vehicle, Proposal to
Dr. Gary Koob, Computer Science Division, Office of Naval Research, (April 1990).

a Cook and Son, presentation at the ONR Foundations of Real-Time Computing
Research Initiative Workshop (Oct. 1989).

* Son, participation in the real-time database coordination meeting with Pat Watson from
IBM Manassas (Nov. 1989).

e Cook, presentation to Mitre Corporation.

*Cook, presentation to SAIC.

*Cook, The StarLite Project, NOSC Code 413 DC Quarterly Review (April 1990).

e Son, Real-Time Database Systems, NOSC Code 413 DC- Quarterly Review (April
199o).

e Cook, invited to DARPA Workshop on Software Fools for Distributed Intelligent
Control Systems (July 1990).

12

* Son, participation at the coordination meeting with Pat Watson from IBM Manassas
and Prof. Tokuda from CMU (August 1990).

1

I
13!

Robert P. Cook and Sang H. Son
University of Virginia
(804) 982-2215
cook or son@cs.virginia.edu
The StarLite Project

N00014-86-K-0245
10/1/89 - 9/30/90

5. Software and Hardware Prototypes
The StarLite integrated programming environment is slowly evolving to the point

where we could begin a national distribution. However, we still have a tremendous
amount of work to do in preparing documentation for the system as it is composed of
several hundred thousand lines of code. Nevertheless, we did distribute the system to
several universities as beta test sites over the last few months.

14

!

APPENDIX

StarLite: An Integrated Environment for
Distributed Real-Time Software

Sang H. Son and Robert P. Cook
Department of Computer Science

University of Virginia
Charlottesville. Virginia 22903

ABSTRACT

In real-time distributed systems, each component of the system must support priority-based resource

management techniques in an integrated manner to satisfy the end-to-end response requirements of tasks.

One of the difficulties in developing and evaluating distributed real-time software is that it takes a long

time to develop a system. Also, evaluation is complicated because it involves a large number of system

parameters that may change dynamically. This paper presents an integrated programming environment,

called StarLite, that supports the design and investigation of distributed real-time software. Experiments

in real-time locking protocols for database systems are presented as a demonstration of the effectiveness

of the environment.

Index Terms - software, integrated programming environment, database, ral-time

This work was supported in pars by ONR under contract # N00014-88-K-0245. by IBM Federal Systems Division under University Agree.
ment WG-249153, and by CIT cotract # CIT-INF-TO-0I I.

i

1. Introduction

In this paper, we report our experiences with a new integrated programming environment, StarLite.

The goal of the StarLite project is to test the hypothesis that a host environment can be used to

significantly accelerate the rate at which we can perform experiments in the areas of operating systems,

databases, and network protocols for real-time systems. This paper discusses the scope of the StarLite

project.

An integrated programming environment is a software and/or hardware package that supports the

inves.igation of the pro, ,tics of a software system in an environment other than that of the target

hardware. Previous tools range from IBM's Virtual Machine operating system to discrete-event sinulla-

tion languages and queuing analysis packages. Except for the VM approach to development, most sys-

tems support only the analysis of an abstraction of a given software system. Thus, there is the persistent

problem of validating the correctness of the model.

The StarLite environment combines the benefits of the VM approach with those of modeling sys-

tems. The benefits of the VM approach are attained to the extent that development is in a host environ-

ment rather than on target hardware and that the same software modules are used for the host analysis and

development phases, as wc, as for embedded testing on the target hardware.

The components of the StarLite environment include a Modula-2 compiler, a symbolic debugger, a

profiler, an interpreter for the architecture, a window package, a simulation package, and a concurrent

transaction execution facility. The compiler and interpreter are implemented in C for portability; the rest

of the software is in Modula-2. The environment has been used to develop a non-proprietary, UNIX-like

operating system that is designed for a multiprocessor architecture, as well as to perform experiments

with concurrency control algorithms for real-time database systems. Both systems are organized as

module hierarchies composed from reusable components.

As one measure of the effectiveness of the environment, it is often possible to fix errors in the

operating system, compile, and reboot the StarLite virtual machine in less than twenty seconds. The total

I

compilation time on a SUN 3/280 for the 66 modules (7500 lines) that comprise the operating system is

16 seconds. The StarLite interpreter, as measured by Wirth's Modula-2 benchmark program [11, executes

at a speed of from one to six times that of a PDP 11/40, depending on the mix of instructions.

Another measure of the effectiveness of the environment is the ease of developing and evaluating

application software. Real-time database software, which is one of the target research areas, is being

developed to demonstrate StarLite's capability. The growing importance of real-time systems in a large

number of applications, such as aerospace and defense systcms, industrial automation, and

commercial/business applications, has been well acknowledged, and has resulted in an increased research

effort in this area 12, 3, 4].

However, evaluating the performance of real-time software or even testing new algorithms has

required a large investment of time and resources. One of the primary reasons for the difficulty in suc-

cessfuUy evaluating a distributed real-time software is that it takes time to develop a system. Further-

more, evaluation is complicated since it involves a large number of system parameters that may change

dynamically. As a result, the field of distributed real-time software evaluation currently lags other

research areas. We feel that an important reason for this situation is that many interrelated factors affect-

ing performance (concurrency control, buffering schemes, data distribution, etc.) have been studied as a

whole, without completely understanding the overhead imposed by each. An evaluation based on a com-

bination of performance characterization and modeling is necessary in order to understand the impact of

control algorithms on the performance of distributed real-time systems.

The StarLite environment can reduce the time and effort necessary for evaluating new technologies

and design alternatives for distributed real-time software. Although there exist tools for system develop-

ment and analysis. few tools exist for distributed real-time system experimentation. Especially if the sys-

tem designer must deal with message-passing protocols and distributed data, it is essential to have an

appropriate environment for success in the design and analysis tasks.

I
i -2-

Recently, simulators have been developed for investigating performance of several priority-based

concurrency control algorithms for real-time applications [5, 6. 71. However, they do not provide a

module hierarchy composed from reusable components as in our environment. Software developed in the

StarLite environment will execute in a given target machine without modification of any layer except the

hardware interface. In the operatipg system area, the ARTS real-time kernel and its toolset, being

developed at Carnegie-Mellon University, attempts to provide a "predictable, analyzable, and reliable dis-

tributed real-time computing environment" which is an excellent foundation for a real-time system [8]. It

implements different prioritized and non-prioritized scheduling algorithms and prioritized message pass-

ing. The major difference beteeen our environment from ARTS is that ours is portable since it is imple-

mented in a host environment, and our environment can support a spectrum of distnbuted database %s-

tem functions without much overhead.

When developing software systems, there should be assumptions and requirements abowut the

environment and the target s' stem. They form the basis for evaluating tools and environiiciis In this

paper, we first discuss assumptions and requirements for StarLite. We then discuss the database interlace

of the StarLite environment. One of the benelits of having an environment such as StarLite is that Ae can

develop application software that provides rap;"' answers to technical questions. To demonstrate the

capability of the StarLite environment, real-time database systems have been prototyped. The results of

experiments with those systems are described.

2. Assumptions

There are three problems to address when developing software: intrinsic, technological, and

software life-cycle problems. Our primary assumption is that the solutions to technological problems

compose a relatively small percentage of a typical system's code. even though a large percentage ol the

design phase may be occupied with technology issues. Thus, the majority of the code deals \ ith intnnsic

problems, such as the protection mechanism for a file server, rather than with technology issues, such as

the access time or capacity of a disk. By properly isolating the technology-dependent portions of aI
-3-

soft, are system behind virtual machine interface definitions, software can be developed in a host

environment that is separated from the target hardware,

As IBM discovered with their VM system, it is cost-effective to provide environments whose sole

purpose is to support software development. A host operating system will always provide a friendlier

development environment than a target hardware system. The bare machine environment is the worst

possible place in which to explore ncw software concepts. For example, even the recovery of the event

history leading up to an error in a distnbuted system can be a difficult and, in some cases, an impossible

task.

Dchugging is greatl, facilitated in the host environment. The StarLite symbolic debugger supfxrt.s

the examination of an arhitrax numtr of execution "threads". As a result, the state of a distributed com-

putation can be examined 'as a whole" In addition to aiding fault isolation, the use of a host environ-

mcnt also facilitates fault insertion. For exampc. the packet error rate on a subnet could be increased to

determine the effect on an interet.

Before the use of a host cn ironment txcomcs feasible, however. it must be x,."Dsble to simulate the

machine-dependent components of a sxstem on the host. The tirst step towards this goal is to require

machine-independent irt.erfaces. For instance, rather than referring to a machine status word at an abso-

lute address, the operating sstem might invoke a procedure to return the word's value. When the s\'-tem

is executed on the host, the implementation module corresponding to the procedure would simulate the

actions of the target hardware. When executing on the target, the implementation would read the content

of the absolute address.

Next, for each device used in a project. it is nccessary to implement a validated simulation model.

This property is necessary for correctness and for the support of performance studies in wAhich the anal sis

of a prototype is used to predict performance on the target hardware. The results of the \ inual machine

studies by Canon 191 indicate that these assumptions ;,re reasonable. With StarLite. it is also possible to

execute in a "hybrid" mode in which some modules execute on the target and some on the host. For

-
I 4.

instance, the disk for a file server could either be a target disk system or a simulated disk when the server

code is executing on the host.

It is also possible to capture the timing effects of instruction execution, but not to the level of indivi-

dual instructions. If that degree of accuracy is required, a VM implementation should be considered.

The tinal assumption is for the existence of a high-level language whose compiler supports separate

compilation of units and generates reentrant code. The StarLite system can be replicated for any such

language.

The separate compilation feature is used to "build" a system. For example, the Coroutines module,

which is normally implemented in assembly language, forms the basis for the concurrent programming

kernel, Processes. The concurrent programming kernel is then used to build the simulation pa-,_,age.

Finally, the concurrent programming kernel, the simulation, and window packages are used to implement

the virtual machine interface of the application package.

In order to facilitate rapid prototvping, we are developing a library of generic device objects. At

present. the object library includes processes, clocks, disks, and Ethernets. Each device is presented to the

user as an abstract data type, which is implemented by using the simulation package to model its charac-

teristics and the window package to display its actions. As each data type is instantiated, a window is

created to display the operations on that instance and also to serve as a point of interaction with the user.

For example, a disk window provides a profile view of the device with a moving pointer to indicate head

movement and sector selection. In designing the window interface, the goals were to present uniform

options that could be used either in "hybrid" mode for real devices or in host-only mode.

3. Requirements for Integrated Environment

The primary project requirement for StarLite is that software developed in the environment must be

capable of being retargetcd to different architectures only by recompiling and replacing a few low-level

modules. The anticipated benefits are fast prototyping times, greater sharing of software in the research

community, and the ability for one research group to validate the claims of another by replicating

1) .5-

experimental conditions exactly.

The StarLite architecture is designed to support the simultaneous execution of multiple operating

systems in a single address space. For example, to prototype a distributed operating system, we might

want to initiate a file server and several clients. Each virtual machine would have its own operating sys-

tem and user processes. All of the code and data for all of the virtual machines would be executed as a

single UNIX process. In order to support tmis requirement, we assume the existence of high-performance

workstations with large local memories. Ideally, we would prefer multi-thread support, but multiproces-

sor workstations are not yet widely available. We also assume that hardware details can be isolated

behind high-level language interfaces to the extent that the majority of a system's software remains

invariant when retargeted from the host to a target architecture.

Figure 1 illustrates the use of the environment during a test session for the StarLite operating s,' -

tem. The tigure illustrates our proprictarv UNIX implementation "booting up" on a six node virtual net-

work. Once the virtual network ha. bootcd, the system designer can can execute test programs, collect

statistics, or ex; mine the system state using the builtin debugger, which is illustrated in Figure 2.

The architec iral requirements to be satisfied by an interpreter that supports multiple operating sys-

tems running in a single, large address space are interesting. They include high speed, compact code,

good error detection, demand loading, dynamic restart, fast context switches, hybrid execution modes,

and portability.

High Speed. Obviously, the speed of the host architecture is a determining factor in the usefulness

of any prototyping effort. Prototyping is most effective for logic-intensive programs, such as operating

systems, because the ratio of code to code-executed-per-function is high. For example, running user pro-

grams at the 'shell level on top of the prototype operating system, which is running on an interpreter, pro-

vides a response-level comparable (several seconds) to a PDP- I1. As the number of users increase o,- as

the number of data-intensive applications increase, the response time increases considerably. Data-

intensive programs tend to apply a large percentage of their code to each data point. Thus, the number of

-6-

NI -160Y ta go 8 8f
I ID mCMLE INITIALIZATION CO'PETE

LIFER :3 WOO(LE INITIAL~IZATION COAPLETE

ISX WOOLI.A 11MVITALIZArIO4 CC14PLETE NOTE: THE PROCESSORS ARE A' DIFFERENT STAGES 'F IEIUTIIN.NO O :PdWE INITIALIZATION EACH~ vIMOV REPRESENTS A O:FFERENT P4ET'VOfK 400E.NO OF FILE :41IIALIZAT:ONINTEvNO EOHETANGPINISUBDFR

IOKt ~f is:SL:ATO W10ET "HE OOEL :NUTL:ATION DIS t.

NIT -ei*Y to go .3B6O689F race dle YlMY

[LFFER :0 NOOLLE INITIALIZATION C04PLETE surf tra sec :nt z3 8 3 arace disk y/ln?' surf trk sec :mt =3 d a 2
ISK mOOuLE .NI'ITALIZAiT~I C010PLETE [PRO OF INODE I'I"ALZAT!CN
.10 .F :401DE INITIALIZAION sw f trk sec :rnt . 3 4

ND 3F F:iI :NP:&J..IZAT:ON FNO OF FILE :N1rIALIZATION

TO IT
Fodua-Z Loader 2ZFAIL I
race yll LSOFT

I5> 4 t4 PATTERN

A~ter Prgra&. MJ to boot zse08.1
A~ter tlu"Der Of Modes (1-183): 4

Figure 1. A Six-Node StarLite System Running UNIX

1040ng.- Jam'e typ 4iL
octule ot m~itialtzed gre. Tres Pointer.

efitents Contents Record
,Gd# 14cdu 4ae I. oft Tree 41L

brapon is ug igt T,,g NIL
p ;; r1SPC1 11 -- aractor au. o

SR 0093FC94 HR 8W6ES79 U2 Storage 441t te P 43 i
Od am -7oca Procedusre Nane PC *13 cstrrg uncer Z'AROINAL :

roOo 3 r"do-ta j 15 Seach,__________________________
'-eeO~~~~e1 Eeaota Si rrors

17 TregOami

Is ayosfay
II

A1: 'maaeodo.comtot.:ottor :z trt'ng ;tj:
37: 'omoNe-.cntunt.geoor zi
29: 'ewNode-. cit :2NIL;
39: ..u~odo^.rigit :2NIL;
49; trsert(ogftdo, tree);
41 : EtV; -:ENO L11Tree; L
44ORCEuR Outptlroe(troo: Tres);

dS: IF trode NMIL TWIN 31*t

48: :Out.Vrite(tre.^.corts.'etter),
49: %out ~rre(tro-.ript); ________________________

Sa: ENC:
S1.E40 OutputTroe;__________________

53.8S
S4. ryp*Oiepiay.AddU4rrpeb -nne, ,,roioa. Ila.re a11~t..0 -
5S: !oetTrne :~ NIL,

Figure 2. The StarLite Symbolic Debugger

data points determines execution speed. In many cases, having fast machines is the only effective way to

prototype data-intensive applications.

Since the StarLite system uses an interpreter to define its virtual machines. we tend to stay away

from data-intensive test programs. It would be nice to have an execution speed comparable to a bare

machine, but that could only be achieved by building a software prototyping workstation. For now, we

are satisfied as long as the edit-compile-boot-and-test cycle is significantly faster than any other environ-

ment.

Compact Code. The generated code for the StarLite architecture is extremely space efficient. For

example, the object code (.o file) sizes for a sample 1,000 line program were SUN3-Modula2(130K),

SUN3-C(65K), PC286-C(35K), StarLite-Modula2(llK). Compact code has a significant effect on the

speed with which the environment can load both system components and user-level programs that might

run on those components. Compactness also increases cache locality, reduces page faults, and maximizes

the quantity of software that can be co-resident in the system.

Error Detection. The benefits of integrity checking as an essential component of a language's

implementation have been discussed by Wirth [10]. The StarLite architecture supports checks for

overflow/underflow, division by zero, subrange and subscript checking, NIL pointer checks, illegal

addresses, and stack overflow. Subrange and subscript checks are generated by the compiler.

Demand Loading. The StarLite architecture supports demand loading, that is. modules are loaded

at the point that one of their procedures is called. Thus, a large software system begins execution very

quickly and then loads only the modules that are actually referenced. For example, one version of the

operating system defers loading the file system, or even the disk drivel, until a file operation is performed.

At the current time, a linker is superfluous; as soon as a module is compiled, it may be executed.

Demand loading and the absence of linking greatly enhances the efficacy of the StarLite debug cycle.

The only limit on debugging is how fast the programmer can discover bugs and type in the changes.

I
.7.

Dynamic Restart. When debugging software, it can be annoying to discover an error, return to the

host level, compile, and then run the system to the point of error only to discover another silly mistake.

The StarLite architecture is designed so that an IMPLEMENTATION module can be compiled in a child

process while the interpreter is suspended. That module can be reinserted into memory and the system

restarted.

Another dynamic restart feature supports the emulation of partial failure as might be experienced in

a distributed system. The Modula-2 compiler does not attempt to statically initialize any data area. Thus,

any module, or set of modules. can be dynamically restarted at any time without reloading the object

modules from disk. For a distributed system, the user can induce virtual processor failures and then

"bring up" the operating system on those nodes without loading any software from disk.

Fast Context Switches. Unlike the "high-speed" requirement, achieving a fast context switch time

can be realized independent of the characteristics of the host machine. For example, there are no context

switches within the interpreter, which is basically a C procedure in a closed loop. Therefore, a host archi-

tecture with a slow context switch time has no effect on the interpreter's context switch time; it is only a

function of the state information that must be saved and restored. This is an important requirement as a

typical operating system "run" can involve thousands of context switches.

Each implementation of the architecture must be balanced to match the characteristics of the host

machine. The current SUN 3280 interpreter executes 200,000 coroutine transfers/second. On the other

hand, the IBM PS2/50 interpreter executes at 10,000 transfers/second.

Hybrid Execution Modes. In a software development environment, it is advantageous to use ser-

vices that already exist in the host environment. For example, it is possible to "mount" the host file sys-

tem on a leaf of a prototyped file system, or even as the prototype's "root" file system. Another example

would be to use the host's database services.

The keys to hybrid execution are architectural support and the definition of interfaces that remain

invariant to changes in implementation technology. Emulation services are usually implemented by VMI
41-

.... .

ROM routines. VM ROM can be used to provide functionality that the prototype software does not. A

VM ROM routine has a DEFINITION module but its implementation is part of the interpreter. At execu-

tion time, the architecture intercepts calls to procedures in VM ROM and directs them to C routines. For

example, when prototyping an operating system to experiment with file system issues, it is not necessary

to worry about program management; VM ROM routines can be used to interface to an existing file sys-

tem. At a later stage of development, the VM ROM code can be gradually replaced with code for a proto-

type file system.

It is easy to add additional packages to the VM ROM interface. The disadvantage is that all ROM

packages must be co-resident with the interpreter. In a future version of StarLite under IBM's OS/2, all

of the ROM packages will be dynamically linked on demand.

Portability. One of the benefits of developing systems in the StarLite environment is that the code

can be shared with other researchers. To facilitate sharing at the object code level, the instructions gen-

erated by the compiler and its object module format are canonical. That is, the byte ordering is fixed, as

is the character code (ASCII), and the floating point format (IEEE). If the host has different conventions,

the compiler performs the conversions as it generates code. To the extent that an implementation module

is machine invariant, it should be possible to transmit object modules from one site to another and to have

them work.

4. Transaction Management interface

The transaction management interface of the StarLite environment is designed to facilitate easy

extensions and modifications. Server processes can be created, relocated, and new implementations of

server processes can be dynamically substituted. It efficiently supports a spectrum of distributed database

functions at the operating system level, and facilitates the construction of multiple database systems with

different characteristics. For experimentation, system functionality can be adjusted according to

application-dependent requirements without much overhead for new system setup. Since one of the

design goals of the StarLite system is to conduct an empirical evaluation of the design and

.9.I

implementation of application software for transaction management, it has built-in support for perfor-

mance measurement of both elapsed time and blocked time for each transaction [11, 12].

The transaction management module library provides support for concurrent multi-transaction exe-

cution, including transparency to concurrent access, data distribution, and atomicity. The environment

jcan manage any number of virtual sites specified by the user. Modules that implement transaction pro-

cessing are decomposed into several server processes, and they communicate among themselves through

ports. The clean interface between server processes simplifies incorporating new algorithms into the

environment, or testing alternate implementations of algorithms. To permit concurrent transactions on a

single site, there is a separate process for each transaction that coordinates with other server processes.

Figure 3 illustrates the structure of the transaction management environment.

User Interface

Configuration Manager Performance Monitor

Transaction Generator

Servers Transaction Manager

Resource Manager DB

Message Server

f StarLite Kernel

Figure 3. Structure of The Transaction Management Environment

I
-10-I

The User Interface (UI) is a front-end invoked when the environment begins execution. UI is

menu-driven, and designed to be flexible in allowing users to experiment with various configurations of

system parameters. A user can specify the following:

" system configuration: number of sites and topology, and the relative speed of CPU, I/O, and communi-

cation cost.

" database configuration: database at each site with user defined structure, size, granularity, and levels of

replication.

" load characteristics: number of transactions to be executed, size of their read-sets and write-sets, tran-

saction types (read-only or update) and their priorities, and the mean interarrival time of transactions.

* concurrency control: locking, timestamp ordering, and priority-based.

UI initiates the Configuration Manager (CM) Lidat initializes the data structures necessary for tran-

saction processing from user specifications. CM invokes the Transaction Generator at appropriate time

intervals to generate the next transaction to form a Poisson distribution of transaction arrival times. Whe.

a transaction is generated, it is assigned an identifier that is unique among all transactions in the system.

Transaction execution consists of read and write operations. Each read or write operation is pre-

ceded by an access request sent to the Resource Manager, which maintains the local database at each site.

If Lhe access request cannot be granted, the Transaction Manager (TM) executes either a blocking opera-

tion to wait until the data object can be accessed, or an abort procedure, depending on the situation. Tran-

sactions commit in two phases. The first commit phase consists of at least one round of messages to deter-

mine if the transaction can be globally committed. Additional rounds may be used to handle potential

failures. T- second commit phase causes the data objects to be written to the database for successful

transactions. TM executes the two commit phases to ensure that a transaction commits or aborts globally.

The Message Server (MS) is a process listening on a well-known port for messages from remote

sites. When a message is sent to a remote site, it is placed on the message queue of the destination site

.11-.

I
and the sender blocks itself on a private semaphore until the message is retrieved by MS. If the receiving

site is not operational, a time-out mechanism will unblock the sender process. When MS retrieves a mes-

sage, it wakes the sender process and forwards the message to the proper servers or TM. The environment

implements Ada-style rendezvous (synchronous) as well as asynchronous message passing. Inter-process

communication within a site does not go through the Message Server, processes send and receive mes-

sages directly through their associated ports.

The inter-process communication structure is designed to provide a simple and flexible interface to

the client processes of the application software, independent from the low-level hardware configurations.

It is split into three levels of hierarchy: transport layer, network layer, and physical layer.

The Transport layer is the interface to the application software, thus it is designed to be as abstract

as possible in order to support different port structures and various message types. In addition, application

level processes need not know the details of the destination device. The invariant built into the design of

the inter-process communication interface is that the application level sender allocates the space for a

message, and the receiver deallocates it. Thus, it is irrelevant whether or not the sender and receiver share

memory space, i.e., whether or not the Physical layer on the sender's side copies the message into a buffer

and deallocates it at the sender's site, and the Physical layer at the receiver's site allocates space for the

message. This enables prototyping distributed systems or multiprocessors with no shared memory, as

well as multiprocessors with shared memory space. When prototyping the latter, only addresses need to

be passed in messages without intermediate allocation and deallocation.

The Physical layer of message passing simulates the physical sending and receiving of bits over a

communication medium, i.e., it is for intersite message passing. The device number in the interface is

simply a cardinal number, this enables the implementation to be simple and extensible enough to support

any application. To simulate sending or to actually send over an Ethernet in the target system. for exam-

pie, a module could map network addresses onto cardinals. To send from one processor to another in a

multiprocessor or distributed system, the cardinals can represent processor numh-rs.

I
-1I2-I

Messages are passed to specific processes at specific sites in the Network layer of the communica-

tions interface. This layer serves to separate the Transport and the Physical layers, so that the Transport

layer interface can be processor- and process-independent and the Physical layer interface need be con-

cemed only with the sending of bits from one site to another. The Transport layer interface of the com-

munication subsystem is implemented in the Transport module. A Transport-level Send is made to an

abstraction called a PortTag. This abstraction is advantageous because the implementation (i.e., what a

PorrTag represents) is hidden in the Ports module. Thus the PortTag can be mapped onto any port struc-

ture or the reception points of any other message passing system. The Transport-level Send operation

builds a packet consisting of the sender's PortTag, used for replies, the destination PortTag, and the

address of the message. It then retrieves from the destination PortTag the destination device number. If

this number is the same as the sender's, the Send is an intra-site message communication, and hence the

middle-level Send is performed. Otherwise the send requires the Physical module for intersite communi-

cation. Note that accesses to the implementation details of the PortTag are restricted to the module that

actually implements it; this enables changing the implementation without recompiling the rest of the sys-

tem.

The Performance Monitor interacts with the transaction managers to record, priority/timestamp and

read/write data set for each transaction, time when each event occurred, statistics for each transaction and

cpu hold interval in each node. The statistics for a transaction includes arrival time, start time, total pro-

cessing time, blocked interval, whether deadline was missed or not, and number of aborts.

5. A Real-Time Database Experiment

The previous section described the structure of the transaction management of the StarLite environ-

ment. In this section, we present a real-time database system developed using the environment. Two

goals of our work were 1) evaluation of the environment itself in terms of correctness, functionality, and

modularity, by using it in implementing a distributed real-time database system, and 2) performance com-

parison between two-phase locking and priority-based locking algorithms uirough a sensitivity study of

1
i -13-

key parameters that affect performance.

5.1. Priority-Based Synchronization

It has been recognized that database systems are assuming much greater importance in real-time

systems that require high reliability, high performance, and predictability [3, 6, 8]. State-of-the-art data-

base systems are typically not used in real-time applications due to two inadequacies: poor performance

and lack of predictability.

In a real-time database system, synchronization protocols must not only maintain the consistency

constraints of the database but also satisfy the timing requirements of the transactions accessing the data-

base. To satisfy both the consistency and real-time constraints, there is a need to integrate synchronization

protocols with real-time priority scheduling protocols (13]. A major source of problems in integrating the

two protocols is the lack of coordination in the development of synchronization protocols and real-time

priority scheduling protocols. Due to the effect of blocking in lock-based synchronization protocols, a

direct application of a real-time scheduling algorithm to transactions may result in a condition known as

priority inversion.

Priority inversion is said to occur when a higher priority process is forced to wait for the execut:i-n

of a lower priority process for an indefinite period of time. When the transactions of two processes

attempt to access the same data object, the access must be serialized to maintain consistcncy. If the tran-

saction of the higher priority process gains access first, then the proper priority order is maintained; how-

ever, if the transaction of the lower priority gains access first and then the higher priority transaction

requests access to the data object, this higher priority process will be blocked until the lower priority tran-

saction completes its access to the data object. Priority inversion is inevitable in transaction systems.

However, to achieve a high degree of schedulability in real-time applications, priority inversion must be

minimized. This is illustrated by the following example.

Example. Suppose T1 , T2 , and T3 are three transactions arranged in descending order of priority

with T, having the highest priority. Assume that T, and T3 access the same data object O. Suppose that

-14.

IW

at time t, transaction T3 obtains a lock on Oi. During the execution of T3 . the high priority transaction TI

arrives, preempts T3 and later attempts to access the object Oi. Transaction T, will be blocked, since 0, is

already locked. We would expect that T I , being the highest priority transaction, will be blocked no longer

than the time for transaction T 3 to complete and unlock Oi. However, the duration of blocking may, in

fact, be unpredictable. This is because transaction T3 can be blocked by the intermediate priority transac-

tion T2 that does not need to access Oi. The blocking of T3 , and hence that of TI, will continue until T,

and any other pending intermediate priority level transactions are completed.

The blocking duration in the example above can be arbitrarily long. This situation can be partially

remedied if transactions are not allowed to be preempted; however, this solution is only appropriate for

very short transactions, because it creates unnecessary blocking. For instance, once a long low priority

transaction starts execution, a high priority transaction not requiring access to the same set of data objects

may be needlessly blocked.

An approach to this problem, based on the notion of priority inheritance, has been proposed [141.

The basic idea of priority inheritance is that when a transaction T of a process blocks higher priority

processes, it executes at the highest priority of all the transactione blocked by T. This simple idea uf

priority inheritance reduces the blocking time of a higher priority transaction. However, this is inadequate

because the blocking duration for a transaction, though bounded, can still be substantial due to the poten-

tial chain of blocking. For instance, suppose that transaction T, needs to sequentially access objects 01

and 02. Also suppose that T2 preempts T3 which has already locked 02. Then, T2 locks 01. Transaction

T, arrives at this instant and finds that the objects 01 and 02 have been respectively locked by the lower

priority transactions T2 and T3 . As a result, T, would be blocked for the duration of two transactions,

once to wait for T2 to release 01 and again to wait for T3 to release 0. Thus a chain of blocking can be

formed.

One idea for dealing with this inadequacy is to use a total priority ordering of active transactions

(151. A transaction is said to be active if it has started but not yet completed its execution. A transaction

I
-15-

can be active in one of two states: executing or being preempted in the middle of its execution. The idea

of total priority ordering is that the real-time locking protocol ensures that each active transaction is exe-

cuted at some priority level, taking priority inheritance and read/write semantics into consideration.

5.2. Experiments with Priority Ceiling

To ensure the total priority ordering of active transactions, three priority ceilings are defined for

each data object in the database: the write-priority ceiling, the absolute-priority ceiling, and the rw-

priority ceiling. The write-priority ceiling of a data object is defined as the priority of the highest priority

transaction that may write into this object, and absolute-priority ceiling is defined as the priority of the

highest priority transaction that may read or write the data object. The rw-priority ceiling is set dynami-

cally. When a data object is write-locked, the rw-priority ceiling of this data object is defined to be equal

to the absolute priority ceiling. When it is read-locked, thc rw-priority ceiling of this data object is

defined to be equal to the write-priority ceiling.

The priority ceiling protocol is premised on systems with a fixed priority scheme. The protocol

consists of two mechanisms: priority inheritance and priority ceiling. With the combination of these two

mechanisms, we get the properties of freedom from deadlock and a worst case blocking of at most a sin-

gle lower priority transaction.

When a transaction attempLs to lock a data object, the transaction's priority is compared with the

highest rw-priority ceiling of all data objects currently locked by other transactions, If the priority of the

transaction is not higher than the rw-priority ceiling, the access request will be denied, and the transaction

will be blocked. In this case, the transaction is said to be blocked by the transaction which holds the lock

on the data object of the highest rw-priority ceiling. Otherwise, it is granted the lock. In the denied case,

the priority inheritance is performed in order to overcome the problem of uncontrolled priority inversion.

For example, if transaction T blocks higher transactions, T inherits P11, the highest priority of the transac-

tions blocked by T.

.16-

i

Under this protocol, it is not necessary to check for the possibility of read-write conflicts. For

instance, when a data object is write-locked by a transaction, the rw-pririty ceiling is equal to the highest

priority transaction that can access it. Hence, the protocol will block a higher priority transaction that may

write or read it. On the other hand, when the data object is read-locked, the rw-priority ceiling is equal to

the highest priority transaction that may write it. Hence, a transaction that attempts to write it will have a

priority no higher than the rw-priority ceiling and will be blocked. Only the transaction that read it and

have priority higher than the rw-priority ceiling will be allowed to read-lock it, since read-locks are com-

patible. Using the priority ceiling protocol, mutual deadlock of transactions cannot occur and each tran-

saction can be blocked by at most by one lower priority transactions until it completes or suspends itself.

The total priority ordering of active transactions leads to some interesting behavior. As shown in the

example above, the priority ceiling protocol may forbid a transaction from locking an unlocked data

object. At lirst sight, this seems to introduce unnecessary blocking. However, this can be considered as

the "insurance premium" for preventing deadlock and achieving block-at-most-once property.

Using the StarLite environment, we have investigated issues associated with this idea of total order-

ing in priority-based scheduling protocols. One of the critical issues related to the total ordering approach

is its performance compared with other design alternatives. In other words, it is important to figure out

what is the actual cost for the "insurance premium" of the total priority ordering approach.

In our experiments, all transactions are assumed to be hard in the sense that there will be no value in

completing a transaction after its deadline. Transactions that miss the deadline are aborted, and disappear

from the system. We have used transaction size (the number of data objects a transaction needs to access)

as one of the key variables in the experiments. It varies from a small fraction up to a relatively large por-

tion (10%) of the database so that conflicts would occur frequently. The high conflict rate allows syn-

chronization protocols to play a significant role in determining system performance. We chose the amval

rate so that protocols are tested in a heavily loaded rather than lightly loaded system. For designing real-

time systems, one must consider high load situations. Even though they may not arise frequently, one

1
-17.

L

would like to have a system that misses as few deadlines as possible when such peaks cccur. In other

words, when a crisis occurs and the database system is under pressure is precisely when making a few

extra deadlines could be most important (161. Due to space considerations, we summarize our findings

briefly to illustrate the performance of the algorithms.

As the transaction size increases, there is little impact on the throughput of the priority-ceiling pro-

tocol over a range of transaction sizes and over various workload. This is because in the priority-ceiling

protocol, the conflict rate is determined by ceiling blocking rather than direct blocking, and the frequency

of ceiling blocking is not sensitive to the transaction size. However, the performance of the two-phase

locking protocol with or without priority degrades very rapidly. This phenomenon is more pronounced as

the transaction workload becomes more 1/0 bound, since there are few conflicts for the small transactions

in the two-phase locking protocol, and the concurrency is fully achieved with an assumption of parallel

11O processing. Poor performance of the two-phase locking protocol for bigger transactions is due to the

high conflict rate.

Another important performance statistic is the percentage of deadlines missed by transactions, since

the synchronization protocol in real-time database systems must satisfy the timing constraints of indivi-

dual transactions. In our experiments, each transaction's deadline is set in proportion to its size and sys-

tem workload (number of transactions), and the transaction with the earliest deadline is assigned the

highest priority. The percentage of deadlines missed by transactions increases sharply for the two-phase

locking protocol as the transaction size increases. A sharp rise was expt:cted, since the probability of

dea Pocks would go up with the fourth power of the transaction size 1171. However, the percentage of

deadlines missed by transactions increases more slowly as the transaction size increases in the priority-

ceiling protocol. Since there is no deadlock in the priority-ceiling protocol, the response time is propor-

tional to the transaction size and the priority ranking.

!
-1is-

6. Conclusions

We cannot offer proof that the StarLite system is the appropriate environment for distributed real-

time systems research. However, we have shown that it is feasible to pursue major systems projects in a

virtual interface environment. Even though the environment cannot execute programs as fast as a physi-

cal machine and it would be infeasible to emulate all of a physical machine's effects, such as memory

interference, the advantages are a greatly accelerated development cycle and totally portable, and hence

reproducible, results.

Although the complexity of a distributed real-time software makes integrated environments difficult

to develop, the implementation has proven satisfactory for experimentation of design choices, different

database and operating system techniques, and even an integrated evaluation of real-time systems. It sup-

ports a very flexible user interface to allow a wide range of system configurations and workload charac-

teristics. Since the StarLite environment is designed to provide a spectrum of database functions and

operating system modules, it facilitates the copstruction of multiple system instances with different

characteristics withouL much overhead. Expressive power and performance evaluation capability of our

environment has been demonstrated by implementing a real-time database system and investigating the

performance characteristics of the priority-ceiling protocol.

StarLite is possible because workstations no, have large physical memories and are fast enough to

run interpreters at the speed of physical machines ten years ago. Ten years ago it would not have been

feasible to run an emulator on a PDP- I1 and then to implement a database system on top of it. StarLite

does not currently take advantage of the multi-thread support available on some of the newer worksta-

tions, but it could.

I
-.19-

References

[1] Wirth, N., Programming in Modula-2, Springer-Verlag, (1983).
[2] Buchmann, A. et al., "Time-Critical Database Scheduling: A Framework for Integrating Real-Time

Scheduling and Concurrency Control," Fifth Data Engineering Conference, Feb. 1989, 470-480.
[31 Son, S. H., "Real-Time Database Systems: Issues and Approaches," ACM SIGMOD Record 17, 1,

Special Issue on Real-Time Database Systems, (March 1988).

[4) Son, S. H. and H. Kang, "Approaches to Design of Real-Time Database Systems," International
Symposium on Database Systemsfor Advanced Applications, Seoul, Korea, (April 1989), 274-28 1.

[5] Abbott, R. and H. Garcia-Molina, "Scheduling Real-Time Transactions: A Performance Study,"
VLDB Conference, Sept. 1988, pp 1-12.

[61 Abbott, R. and H. Garcia-Molina, "Scheduling Real-Time Transactions with Disk Resident Data,"
VLDB Conference, August 1989.

[7] Rajkumar, R., "Task Synchronization in Real-Time Systems," Ph.D. Dissertation, Carnegie-Mellon
University, August 1989.

[8] Tokuda, H. and C. Mercer, "ARTS: A Distributed Real-Time Kernel," ACM Operating Systems
Review 23, 3, July 1989.

[91 Canon, M.D. et al, "A Virtual Machine Emulator for Performance Evaluation." Communications of
the ACM 23, 2 (Feb. 1980). 71-80.

[10] Wirth, N., "Microprocessor Architectures: A Comparison Based on Code Generation by Compiler,"
Communications of the ACM 29, 10 (Oct. 1986), 978-994.

[111 Son, S. H., "A Message-Based Approach to Distributed Database Prototyping," Fifth IEEE
Workshop on Real-Time Software and Operating Systems, Washington, DC, May 1988, 71-74.

[12] Son, S. H. and Y. Kim. "A Software Prototyping Environment and Its Use in Developing a Mul-
tiversion Distributed Database System," 18th International Conference on Parallel Processing, St.
Charles, Illinois, August 1989, Vol. 2. 81-88.

[13] Son, S. H., "On Priority-Based Synchronization Protocols for Distributed Real-Time Database Sys-
tems," IFACIIFIP Workshop on Distributed Databases in Real-Time Control. Budapest, Hungary,
October 1989, 67-72.

[141 Sha. L., R. Rajkumar, and J. Lehoczky, Priority Inheritance Protocol: An Approach to Real-Time
Synchronization, IEEE Transaction on Computers (to appear).

[15] Sha, L., R. Rajkumar, and J. Lehoczky, "Concurrency Control for Distributed Real-Time Data-
bases," ACM SIGMOD Record 17, 1, Special Issue on Real-Time Database Systems, March 1988,
82-98.

[16] Son, S. H. and C. Chang, "Performance Evaluation of Real-Time Locking Protocols using a Distri-
buted Software Prototyping Environment," 10th International Conference on Distributed Comput-
ing Systems, Paris, France, June 1990.

[17] Gray, J. et al., "A Straw Man Analysis of Probability of Waiting and Deadlock," IBM Research
Report, RJ 3066, 1981.

.20-a

Performance Evaluation of Real-Time Locking Protocols
using a Distributed Software Prototyping Environment

Sang H. Son* and Chun-Hyon Chang**

* Department of Computer Science
University of Virginia

Charlottesville, VA 22903, USA
** Department of Computer Science

Kon-Kuk University
Seoul, Korea

ABSTRACT include its ready time and deadline, as well as temporal con-
sistency of the data accessed by it. Transactions must be

Real-time systems must maintain data consistency while scheduled in such a way that they can be completed before their

minimizing the number of tasks that miss the deadline. To corresponding deadlines expire. For example, both the update

satisfy both the consistency and real-time constraints. theae is and query on a tracking data of a missile must be processed
the need to integrate synchronization protocols with real-time within the given deadlines: otherwise, the information provided

could be -t little value. In such a system, transaction process-priority scheduling protocols. In this paper, we address the
problem of priority scheduling in real-time database systems. ing must satisfy not only the database consistency constraints
We first present a prototyping environment for investigating but also the timing constraints.

distributed software. Specific priority-based real-time locking In addition to providing shared data access capabilities,
protocols are then discussed, together with a performance study distributed real-time database systems offer a means of loosely
which illustrates the use of the prototyping environment for coupling communicating processes, making it easier to rapidly
evaluation of synchronization protocols for real-time database update software, at least from a functional perspective. How-
systems. ever, with respect to time-driven scheduling and system timing

predictability, they present new problems. One of the charac-
1. Introduction teristics of current database managers is that they do not

schedule their transactions to meet response time requirementsThe growing importance of real-time computing in a and they commonly lock data tables to assure database con-
wide range of applications such as aerospace and defense sys- sistency. Locks and time-driven scheduling are basically
terns, industrial automation, and nuclear reactor control, has incompatible. Low priority transactions holding locks required
resulted in an increased research effort in this area. Distributed by higher priority transactions can and will block the higher
systems greatly exacerbate the difficulty of developing real- priority transactions, leading to response requirement failures.
time systems as delays associated with interprocess communi- New techniques are required to manage data consistency which
cations and remote database accesses must be taken into are compatible with time-driven scheduling.
account (Wat88]. Researchers working on developing real-time
systems based on distributed system architecture have found One of the primary reasons for the difficulty in success-
out that database managers are assuming much greater impor- fully developing and evaluating new database management
tance in real-time systems. In the recent workshops sponsored techniques suitable for real-time applications is that it takes a
by the Office of Naval Research [IEEE89. ONR89], developers long time to develop a system, and evaluation is complicated
of real-time systems pointed to the need for basic research in because it involves a large number of system parameters that
database systems that satisfy timing constraint requirements in may change dynamically. For example, although new
collecting, updating, and retrieving shared data. Further evi- approaches for synchronization and database recovery have
dence of its importance is the recent growth of research in this been developed recently (Son88, Son891. experimentation to
field [Shin87, Son88b]. verify their properties and to evaluate their performance has notbeen perfonned due so the lack of appropriate test tools.

Compared with traditional databases, real-time database
systems have a distinct feature: they must satisfy the timing A prototvping technique can be applied effectiely to the
constraints associated with transactions. In other words, "time" evaluation of database management techniques for distributcd
is one of the key factors to be considered in real-time database real-time systems. A database prototyping evironmeri is a
systems. The timing constraints of a transaction typically software package that supports the evaluation of database

management techniques in an environment other than that of
the target da-abase system. The advantages of such an environ.

This work was supported in pars by)NR contract 0 N003OI4-88- ment are obvious [Son90. Although there exist tools for systemK-0245. by DOE grant 0 DE-FGOS-8gER25063, and by IBM FSD development and analysis, few prototyping tools exist for distn-under University Agreement WG-249153. buted database experimentation, especially for distnbuted real.

I
!

time database systems. Recently, simulators have been different performance and reliability characteristics for an

developed for investigating performance of several priority- operating system as well as database management functions

based concurrency control algorithms for real-time applications (Son88c, Son90]. Operating system facilities are included in the

.Abb8g. Abb89, Raj89J. However, they do not provide a library because te correct functioning and timing behavior of

module hierarchy composed from reusable components as in database control algorithms depends on the appropriate support

our pmrtoyping environment. Software developed in our proto- of the underlying operating system. For experimentation, the

typing environment will execute in a given target machine module library facilitates the construction of multiple system

without modification of any layer except the hardware inter- instances customized according to application-dependent
face. In the operating system area, the ARTS real-time kernel requirements without much overhead.
and its toolset, being developed at Carnegie-Melon University, The pmtotyping envirortment provides support for iran-
attempts to provide a "predictable, analyzable, and reliable dis- saction processing, including transparency to concurrent access,
tributed real-time computing environment" which is an excel- data distribution, and atomnucity. An instance of the prototyping
lent foundation for a real-time system [Tok89]. It implements environment can manage any number of virtual sites specified
different prioritized and non-prioritized scheduling algorithms by the user. Modules that implement transaction processing are
and prioritized message passing. The major difference between decomposed into several server processes, and they communi-
our prototyping environment from ARTS is that ours is portable cate among themselves through ports. The clean interface
since it is implemented in a host environment, and our environ- between server processes simplifies incorporating new algo-
ment can support a spectrum of distributed database system rithms and facilities into the prototyping environment. or test-
functions without much overhead. ing alternate implementations of algorithms. A separate process

This paper presents a database prototyping environment for each transaction is created for concurrent execution of ran-
that supports evaluation of distributed real-time database sys- sactions.
terns. To illustrate its usefulness, a series of experimentation to Figure I illustrates the structure of the prototyping
evaluate prority-based real-time locking protocols has been environment. The prototyping environment is based on a con-
performed. current programming kernel, called the StarLite kernel, which

One of the major problems in priority-based locking pro- supports process control to create, ready, block, and terminate
tocols is that, owing to the effect of blocking, a condition processes. Based on the StarLite kernel, the environment con-
known as uboumded priority inversion. where a higher priority sists of the modules for user interface, configuration manage-
task is blocked by lower priority tasks for an indefutite period ment and transaction generation, transaction manager, message
of time. To ddre ;s this problem, the priority ceiling protocol server, resource manager, and performance monitor.
was proposed in [Sha88]. It tries to achieve not only minimiz- User Interface (U) is a front-end invoked when the pro-
ing the blocking time of a transaction to at most one lower totyping environment begins. UI is menu-driven, and designed
priority transaction execution time, but also preventing the for- to be flexible in allowing users to experiment various confi-
mation of deadlocks. In this paper, we investigate the perfor- gurations with different system parameters. A user can specify
mance of the priority ceiling protocol and compare it with other the following:
synchronization protocols. We also discuss the performance of
real-time locking protocols in distributed database environ- a system configuration: number of sites and topology, and the
ments. relative speed of CPU, 110, and communication cost.

The rest of the paper is orgarized as follows. Section 2
presents the design principles and the current implementation of
the prototyping environment. Section 3 discusses priority-based
real-time locking protocols and presents their experimental per-
formance results using the prototyping environment. Section 4 U L't race
presents two different priority-based locking protocols and their _

performance in distributed environments. Section 5 is the con- [Conrig. Manager I Perf°om ance Monutori
clusion.

2. Structure of the Prototyping Environment

A prototyping environment, if properly structured, can Servers Transacton Manager I

reduce the time for evaluating new technologies and design
alternatives. From our past experience, we assume that a rela- Resource Manager - DB
tively small portion of a typical database system's code is ,

affected by changes in specific control mechanisms, while the Message Server i
majority of code deals with intrinsic problems, such as file
management. Thus, by properly isolating technology-dependent
portions of a database system using modular programming
techniques, we can implement and evaluate design alternatives
very rapidly. For this reason, cur prototyping environment is
designed as a modular, message-passing system to support easy
extensions and modifications. Server processes can be created, Fig. 1. Structure of the prototypng environmcnh
relocated, and new implementations of server processes can be
dynaucally substituted. It provides a library of modules with

e database configuration: database at each site with user computing (signal processing) and database accessing (transac-
defined structure, size, granularity, and levels of replication tions). A task can have multiple transactions, which consists of

e load characteristics: number of transactions to be executed, a sequence of read and write operations operating on the data-

size of their read-sets and write-sets, transaction types (read- base. Each transaction will follow the two-phase locking proto-

only/update and periodic/aperiodic) and their priorities, and col [Esw76], which requires a transaction to acquire all the

the mean interarrival time of aperiodic transactions. locks before it releases any lock. Once a transaction releases a
lock. it cannot acquire any new lock. A high priority task will

a concurrency control: locking. timestamp ordering, and preempt the execution of lower priority tasks unless it is
priority-based, blocked by the locking protocol at the database. In this section

UI initiates the Configuration Manager (CM) which ini- we consider them in a single site environment. Real-time lock-
tializes necessary data structutres for transaction processing ing protocols in distributed environment is discussed in the next
based on user specification. CM invokes the Transaction Gen- section.
erator at an appropriate time interval to generate the next tran-
saction. 3.1. Priority-Based Synchronization

Transaction execution consists of read and write opera- In a real-time database system, synchronization proto-
tions. Each read or write operation is preceded by an access cols must not only maintain the consistency constraints of the
request seit to the Resource Manager, which maintains the database but also satisfy the timing requirements of the transac-
local database at each site. Each transaction is assigned to the tions accessing the database. To satisfy both the consistency
Transaction Manager (TM). The TM issues service requests on and real-time constraints, it is necessary to integrate synchroni-
behalf of the ansaction and reacts appropriately to the request zation protocols with real-time prionty scheduling protocols.
replies. For instance, if a transaction requests access to a data Due to the effect of blocking in lock-based synchronization
object that is already locked, the TM executes either blocking protocols, a direct application of a real-time scheduling algo-
operation to wait until the data object can be accessed, or abort- rithm to transactions may result in a condition known as prior-
ing the transaction, depending on the situation. TM executes ity inversion. Priority inversion is said to occur when a higher
the two-phase commit protocol to ensure that a transaction priority task is forced to wait for the execution of a lower prior-
commits or aborts globally. ity task for an indefinite period of tine When two transactions

The prototyping environment is currently implemented attempt to access the same data object, the access must be sen-
on a single host. The distributed environment is simulated by alized to maintain consistency. If the transaction of the higher
the Message Server (MS) listening on a well-known port for priority task gains access first, then the proper priority order is

messages from remote sites. When a message is sent to a maintained; however, if the transaction of the lower priority
remote site. it is placed on the message queue of the destination gains access first and then the higher priority transaction

site and the sender can block itself on a private semaphore until requests access to the data object, this higher priority task will
the message is retrieved by the MS at the receiving site. If the be blocked until the lower priority transaction completes its
receiving site is not operational, a time-out mechanism will access to the data object. Priority inversion is inevitable in tran-
unblock the sender process. When the MS retrieves a message, saction systems. However, to achieve a high degree of schedu-
it wakes the sender process and forwards the message to the lability in real-time applications, priority inversion must be
proper servers or TM. The prototyping environment imple- minimized. This is illustrated by the folVowing example.
ments Ada-style rendezvous (synchronous) as well as asynchro- Example: Suppose T1 , T 2. and T3 are three transactions
nous message passing. Inter-process communication within a arranged in descending order of priority with T, having the
site does not go through the Message Server; processes send highest priority. Assume that T, and T3 access the same data
and receive messages directly through their associated ports. object 0. Suppose that at time t, transaction T3 obtains a lock

The Performance Monitor interacts with the transaction on Oi. During the execution of T1 , the high priority transaction
managers to record priority/timestamp and read/write data set T, arrives, preempts T3, and later attempts to access the object
for each transaction, time when each event occurred, statistics 01. Transaction T, will be blocked, since 0, is already locked.
for each transaction in each node. The statistics for a transac- We would expect that T1 , being the highest priority transaction.
tion includes arrival time, start ime, total processing time, will be blocked no longer than the time for transaction T, to

blocked interval, whether deadline was missed or not, and the complete and unlock Q. However, the duration of blocking
number of aborts. may. in fact, be unpredictable. This is because transaction T,

can be blocked by the intermediate priority transaction T, that
does not need to access 0,. The blocking of T1, and hence that3. Prototyplng Real-Time Database Systems of T1 , will continue until T 2 and any other pending intermediate

In this section, we present a real-time database system priority level transactions are completed.
prototyped using the prototyping environment. Two goals of The blocking durauon in the example above can be arbi-
our prototyping work are 1) evaluation of the prototyping trarily long. This situation can be partially remedied if transac-
environment itself in terms of correctness, functionality, and tions are not allowed to be preempted: however, this solution is
modularity, by using it in prototyping distrbuted database sys. only appropriate for very short transactions, because it creates
tems, and 2) performance evaluation of real-time locking and unnecessary blocking. For instance, once a long low pnority
pnority-based synchronization protocols through the sensitivity transaction starts execution, a high pnonty transaction not
study of key parameters that affect performance. requiring access to the same set of data objects may he need-

Real-time databases are often used by applications such lessly blocked.
as tracking. Tasks in such applications consist of both

!
I

An approach to this problen, based on the notion of Under this protocol. it is not necessary to check for the
priority inheritance. has been proposed [Sha87]. The basic idea possibility of read-write conflicts. For instance, when a data
of priority inheriumc is that when a transaction T of a task object is write-locked by a transaction, the rw-pnority ceiling is

* blocks higher priority tasks, it executes at the highest priority of equal to the highest priority transaction that c- across it.
aii the trinira ,aons blocked by T. This Lnple id. ot prionty Hence., ie protocol will block a higher priority transaction mat
inheritance reduces the blocking time of a higher prionty tran- may write or read iL On the other hand, when the data object is
saction. However, this is inadequate because the blocking dura- read-locked, the rw-prionty ceiling is equal to the highest pnor-
tion for a transaction, though bounded, can still be substantial ity transaction that may write it. Hence, a transaction that
due to the potential chain of blocking. For instance, suppose attempts to write it will have a priority no higher than the rw-
that transaction T , needs to sequentially access objects 01 and priority ceiling and will be blocked. Only the transaction that
02. Also suppose that T2 preempts T3 which has already locked read it and have priority higher than the rw-priority ceiling will
02. Then, T2 locks 01. Transaction T, arrives at this instant be allowed to read-lock it, since read-locks are compatible.
and fids that the objects O1 and 02 have been respectively Using the priority ceiling protocol, mutual deadlock of transac-
locked by the lower priority transactions T2 and T,. As a result, tions cannot occur and each transaction can be blocked by at
T, would be blocked for the duration of two transactions, once most by one lower priority transactions until it completes or
to wait for T 2 to release 01 and again to wait for T, to release suspends itself. For a more formal discussion on the protocol
02. Thus a chain of blocking can be formed, readers are referred to [Sha88]. The next example shows how

One idea for dealing with this inadequacy is to use a transactions are scheduled under the priority ceiling protocol.
total priority ordering of active transactions [Sha88]. A transac- Example: Consider the same situation as in the previous
tion is said to be active if it has started but not yet completed its example. According to the protocol. the priority ceiling of 0 is
execution. A transaction can be active in one of two states: exe- the priority of TI. When T2 tries to access a data object, it is
cuting or being preempted in the middle of its execution. The blocked because its priority is not higher than the priority ceil-
idea of total priority ordering is that the real-time locking proto- ing of 01. Therefore T, will be blocked only once by T, to
col ensmures that each active transaction is executed at some access 0, regardless of the number of data objects it may
priority level. taking priority inheritance and read/wine seman- access.
tics into consideration. The total priority ordering of active transactions leads to

some interesting behavior. As shown in the example above, the
3.2. Total Ordering by Priority Ceiling priority ceiling protocol may forbid a transaction from locking

To ensure the total priority ordering of actie transac- an unlocked data object At first sight, this seems to introduce
tions, three priority ceilings are defined for each data object in unnecessary blocking. However, this can be considered as the
the database: the write-priority ceiling, the absolute-priority "insurance premium" for preventing deadlock and achieving
ceiling, and the rw-priority ceiling. The write-priority ceiling of block-at-most-once property.
a data object is defined as the priority of the highest priority Using the protoryping environment, we have been inves-
transaction that may write into this object, and absolute-priority tigating issues associated with this idea of total ordering in
ceiling is defined as the priority of the highest priority transac- prionty-based scheduling protocols. One of the critical issues
tion that may read or write the data object. The rw-priority related to the total ordering approach is its performance com-
ceiling is set dynamically. When a data object is write-locked, pared with other design alternatives. In other words, it is impor-
he rw-priority ceiling of this data object is defined to be equal tant to figure out what is the actual cost for the "insurance

to the absolute priority ceiling. When it is read-locked, the rw- premium" of the total priority ordering approach. In our expert-
priority ceiling of this data object is defined to be equal to the merits, all transactions are assumed to be hard in the sense that
write-priority ceiling. there will be no value in completing a transaction after its dead-

The priority ceiling protocol is premised on systems with line. Transactions that miss the deadline are aborted, and disap-
a fixed priority scheme. The protocol consists of two mechan- pear from the system.
isms: priority inheritance and priority ceiling. With the combi-
nation of these two mechanisms, we get the properties of free- 3.3. Performance Evaluation
dom from deadlock and a worst case blocking of at most a sin- Various statistics have been collected during the expen-
gle lower priority transaction. ments for comparing the performance of the priority ceiling

When a transaction attempts to locc a data object, the protocol with other synchronization control algorithms. Tran-
transaction's priority is compared with the highest rw-prionry saction throughput and the percentage of deadline missing tran-
ceiling of all data objects currently locked by other transactions. sactions are the most important performance measures in real.
If the priority of the transaction is not higher than the rw- time database systems. This section presents these performance
priority ceiling, the access request will be denied, and the tran- measures in a single site database system. Performance in dis-
saction will be blocked. In this case, the transaction is said to tributed environments will be discussed in the next section.
be blocked by the transaction which holds the lock on the data Transaction are generated with exponentially distributed
object of the highest rw-priority ceiling. Otherwise, it is granted interarnival times, and the data objects updated by a transacton
the lock. In the denied case, the prionty inheritance is per-aracs,-nformd i orer o oercoe te poblm o uncntrlle pror- are chosen uniformly from the database. The total processing
formed i order to overcome the problem of" uncontrolled prior- time of a transaction is directly related to the number of data
ity inversion. For example, if transaction T blocks higher tran- object accessed. Due to space considerations, we do notsacions, T inherits Pit, the highest Priorty of the transactions ojcsacse.Det pc osdrtos 4 on)
blocked by T. present all our results but have selected the graphs which best

illustrate the difference and performance of the algorithms. For

example, we have omitted the results of an experiment thatI
!

varied the size of the daabasc and thus the probability of con- transaction's deadline is set in proportion to its size and system

flicts. because they only confirm and not increase the workload (number of transactions), and the transaction with the

knowledge yielded by other experiments. earliest deadline is assigned the highest priority. As shown in

For each experiment and for each algorithm tested, we Figure 3, the percentage of deadline-missing transactions
cojicred performance aain,,, a~ii ave d oer the 1 . increases sharply for the two-phase locking protocol as the iran-

The percentage of deadline-missing transactions is calculated saction size micreases. A narp rise was expected, since the pro-

with the foUowing equation: %missed = 100 * (number of bability of deadlocks would go up with the fourth power of the

deadline-missing transactions / number of - transaction size [Gray8l1. However. the percentage ofdeadirmmisingtrasacion / umbr o taansctins ro- deadfine-missing transactions increases more slowly as the

cessed). A transaction is processed if either it executes com- mtransaction size increases in the priority ceiling protocol. Since
pletely or it is aborted. In our experiments, all transactions a ty
assumed to be hard in the sense that there will be no value in there is no deadlock in priority ceiling protocol, the response

completing a transaction after its deadline. Transactions that time is proportional to the transaction size and the priority rank-

miss the deadline are aborted, and disappear from the system. Mg.

We have used transaction size (the number of dat 4. Priority Celing in Distributed Environments
objects a transaction needs to access) as one of the key vai-
ables in the experiments. It varies from a small fraction up to a In this section, we discuss the use of the priority ceiing

relatively large portion (10%) of the database so that conflicts approach as a basis for real-time locking protocol in a distri-

would occur frequently. The high conflict rate allows synchron- buted environment. The priority ceiling protocol might be

ization protocols to play a significant role in determining sys- implemented in a distributed environment by using the global

tem performance. We also chose the average arrival rate so that ceiling manager at a specific site. In this apach. all decisions

protocols are tested in a heavily loaded rather than lightly for ceiling blocking is performed by the global ceiling manager.

loaded system. For designing real-time systems, one must con- Therefore all the information for ceiling protocol is stored at the

sider high load situations. Even though they may not arise fre- site of the global ceiling manager.

quenly, one would like to have a system that misses as few The advantage of this approach is that the temporal con-
deadlines as possible when such peaks occur. In other words, sistency of the database is guaranteed, since every data object
when a crisis occurs and the database system is under pressure maintains most up-to-date value. While this approach ensures
is precisely when making a few extra deadlines could be most consistency, holding locks across the network is not very atrac-
important [Abb88]. tive. Owing to communication delay, locking across the net-

We normalize the transaction throughput in terms of data work will only enforce the processing of a transaction using

objects accessed per second for successful transactions, not in local data objects to be delayed until the access requests to the

transactions per second, in order to account for the fact that remote data objects are granted. This delay for synchronization.

bigger transactions need more database processing. The nor- combined with the low degree of concurrency due to the strong

malization rate is obtained by multiplying the transaction corn- restrictions of the priority ceiling protocol, is counter-

pletion rate (transactions/second) by the transaction size (data productive in real-time database systems.

objects accessed/transaction). An alternative to the global ceiling manager approach is

In Figure 2, the throughput of the priority ceiling proto- to have replicated copies of data objects. An up-to-date local

col (C), the two-phase locking protocol with priority mode (P), copy is used as the primary copy, and remote copies are used as

and the two-phase locking protocol without priority mode (L), the secondary read-only copies. In this approach, we assume a

is shown for transactions of of different sizes. Since we chose single writer and multiple readers model for distributed data

the average arrival rate to make the system heavily loaded, both objects. This is a simple model that effectively models applica-
CPU and L/0 were very heavily loaded when the average trian- Lions such as distributed tracking in which each radar station

saction size reaches 20. As the transaction size increases, there maintains its view and makes it available to other sites in the

is little impact on the throughput of the priority ceiling protocol network. For this approach to work, the following restrictions

over a range of transaction sizes shown in Figure 2. This is are necessary:
because in the priority ceiling protocol, the conflict rate is
determined by ceiling blocking rather than direct blocking, and (1) Every data object is fully replicated at each site.
the frequency of ceiling blocking is not sensitive to the transac-
tion size. (2) Data objects to be updated must be a primary copy at

the same site with the updating transaction.

However. the performance of the two-phase locking pro-

tocol with or without priority degrades very rapidly. This (3) Every transaction must be committed before updating

phenomenon is more pronounced as the transaction workload remote secondary copies.

becomes more I/O bound, since there are few conflicts for the Under these restrictions, the local ceiling manager at each site
small transactions in the two-phase locking protocol, and the can enforce the prionty ceiling protocol for the svnchroniration
concurrency is fully achieved with an assumption of parallel of not only the local data objects (primary or replicated copies).
1/0 processing. Poor performance of the two-phase locking pro- but also remote primary copies and local replicated copies. The
tocol for bigger transactions is due to the high conflict rate. first restriction is necessary because in a distributed database

Another important performance statistic is the percen- environment, holding locks across the network will occur if all

tage of deadline-rmissing transactions, since the synchronization the data objects requested by a transaction do not reside at the

protocol in real-time database systems must satisfy the timing local site. If we allow each transaction to update its local copy

constraints of individual transaction. In our experiments, each without synchronizing with other transactions, transaction roll
back and subsequent abort may result as in opumstic

I
I

concurrency controL This situation is not acceptable in real- set of real-time transactions. Performance improv-ncric of the
time applicanons. Me second resriction prevents it by provid- local ceiling approach is more substantial with small communi-

ing only a single primary copy. cation delays than with large delays. This is because as com-

If we insist that copies of a dat objects must be identical munication delay increases, the concurrency achieved by the
with respect to all referentes, a objects bn updaiti e pr. local ceilirg approach is limited by the the communication cost
wih ropyecat o mmit a untier l all teresmon Ucpatng ahe pr due to data replication. Figure 6 shows the percentage ofmary copy cannot commit tt althe remote copies are ~ daln-isn rnatosfrtoseii omncto

updated. However. this solution requires locking data objects deadline-missing trasactions for two specific communication

across the network, which can lead to long durations of block- delays. As shown in Figure 5. the performance difference in

ing. The third restriction solves this problem by allowing terms of deadline-missing transactions between two approaches

remote copies to be historical copies of the primary copy; the increases as the communication delay increases over a wide

primary and remote copies cm be updated asynchronously. ThM range of transaction mix. As the proportion of read-only wan-

third restriction, however, may cause a temporal inconsistency, sactions increases, the number of dedlie-missing transactions
owing to the delays in the network. That is, some of the views decreases since the conflict rate will decrease.
can be out of date. Even with this potential problem of reading Our performance results have illustrat,. the superiority
out of date values, the third restriction is very critical in of the local ceiling approach over the global ceiling approach.
improving the system responsiveness in distributed environ- at least under one representative distributed real-time database
ments. This also solves the problem of distributed deadlock, and transaction model Hence, from this experimentation, we
Since we do not have deadlocks at each site. and locks are not believe that, even with the potential problem of temporal incon-
allowed to be held across the network, we cannot have distri- sistency (i.e., reading out of date values), the local ceiling
buted deadlocks, approach is a very powerful technique for real-time con-

We have investigated the performance characteristics of currency control in distributed database systems.

the global ceiling approach and the local ceiling approach with There are applications where a temporally consistent
replication in a distributed environment. The real-time database view is more important than just the latest information that can
system we have prototyped for the experiment consists of three be obtained at each site. For example, in an application like
sites with fully interconnected communication network. To tracking, a local track would be updated periodically in con-
focus on the impact of the transaction mix and the communica- junction with repetitive scanning. In order to provide a tem-
tion cost on the number of deadline-missing transactions, we porally consistent view in a distributed environment, we can
did not include any V/O cost for the experiments. In other utilize the periodicity of the update transaction as a timestamp
words, a memory-resident database system in a distributed mechanism. If the system provide multiple versions of data
environment was simulated. As in the single-site experiments, objects, ensuring a temporally consistent view becomes a real-
transactions enter the system with the exponentially distributed time scheduling problem in which the time lags in the disti-
interarrival times and they are ready to execute when they buted versions need to be controlled. Once the time lags can be
appear in the system. Update transactions are assigned to a site controlled by the timestamps of data objects, transactions can
based on their write-set, and read-only transactions are distri- read the proper versions of distributed data objects, and ensure
buted randomly. The objects updated by a transaction are that decisions are based on temporally consistent data.
chosen uniformly from the database.

Figure 4 shows the ratio between the throughput of the 5. Conclusions
global ceding approach and that of the local ceiling approach, Prototyping large software systems is not a new
based on different transaction mix and communication delays. approach. However, methodologies for developing a prototyp-
Even without considering the communication delay (i.e., corn- ing environment for distributed database systems have not been
munication delay = 0), the local ceiling approach achieves the investigated in depth in spite of its potential benefits. In this
throughput between 1.5 and 3 times higher than that of the glo- paper, we have presented a prototyping environment that has
bal ceiling approach, over the wide range of transaction mix. been developed based on the StarLite concurrent programming
The reason for this difference is that the degree of concurrency kernel and message-based approach with modular building
among the transactions at each site can be greatly improved due blocks. Although the complexity of a distributed database sys-
to the decoupling effect of data replication. If we consider tern makes prototypng difficult, current implementation of the
communication delays, this performance ratio will increase prototypmg environment has proven satisfactory for experimen-
according to the communication delay as shown in Figure 4. tation of design choices, different database techniques and pro-

Figure 5 illustrates the ratio of the percentage of dead- tocols, and even an integrated evaluation of database systems. It
line missing transactions between the global and the local ceil- supports a very flexible user interface to allow a wide range of
ing approach, based on different communication delays for a system configurations and workload characteristics. Since our
specific transaction mix (50% read-only and 50% update tran- prototyping environment is designed to provide a spectrum of
sactions). There is a significant difference between the two database functions and operating system modules. it facilitates
approaches in the number of deadline massing transactions, the development of multiple system instances with diftferent
although the increase rate of this performance ratio vanes with characteristics without much overhead. Expressive power and
the communication delay. In the range of small communication performance evaluation capability of our prototyping environ-
delays (up to 2 time units), this ratio increases rapidly, and then ment has been demonstrated by prototyping a distributed real-
rather slowly after that. As the communication delay increases, time database system and investigating its performance charac-
the performance ratio increases beyond 16. This implies that the teristics.

global ceiling approach is more than 16 times lkely to miss the In real-time database systems, transactions must he
real-time constraints than the local ceiling approach, for a given scheduled to meet their timing constraints. In addition, thei

I

system should support a predictable behavior such that the pos- [IEEE89] Sith IEEE Workshop on Real-Time Operating Sys-

sibility of missing deadlines of critical tasks could be informed temns and Software. Pittsburgh. Pennsylvania, May

ahead of time, before their deadlines expire. Priority ceiling 1989.
, : one -proach tir whievp a hieh deeree of schedula- rLi,,87] Liu,1. W. S., K. 1. Lim and S. Natarajan. "Schedul-

bility and system predictability. In this paper, we have investi- ing Real-Time, Periodic Jobs Using imprecise
gated this approach and compared its performance with other Results," Real-Time Systems Symposium. Dec. 1987,
techniques and design choices. It is shown that this technique 252-260.
might be appropriate for real-time transaction scheduling since
it is very stable over the wide -,-nge of transaction sizes, and [ONR89] ONR Annual Workshop on Foundations of Real-

compared with two-phase locking prc-ocols, it reduces the Time Computing, White Oak. Maryland, Oct. 1989.

number of deadline-missing transactions. [Raj89] RaJkurnar, R.. "Task Synchronization in Real-Time

There are other technical issues associated ., Systems," Ph.D. Dissertation, Carnegie-Mellon

priority-based scheduling protocols that need fither investiga- University, August 1989.

tion. For example, the analytic study of the priority ceiling pro- [Shag7] Sha, L., R. Rajkumar. and J. Lehoczky, "Priority
tocol provides an interesting observation that the use of read Ineritance Protocol: An Approach to Real-Time
and write semantics of a lock may lead to worse performance in Synchronization." Technical Report, Computer Sci-
terms of schedulability than the use of exclusive semantics of a ence Dept., Carnegie-Mellon Univ.rsity, 1987.
lock. This means that the read semantics of a lock cannot be
used to allow several readers to hold the lock on the data object. cShr88 n Shn L., R. Rajku ar b and R. Lehoczky, "Con-

and the ownership of locks must be mutually exclusive. Is it currency Control for Distributed Real-Time Data-

necessarily true? We are investigating this and other related bases," ACM SIGMOD Record 17. 1, Special Issue

issues using the prototypmg envirnment, on Real-Time Database Systems March 1988, 82-
98.

Transaction scheduling options for real-time database

systems also need further investigation. In priority ceiling pro- [Shin87] Shin. I. G., "Introduction to the Special Issue on

tocol and many other database scheduling algorithms. preemp- Real-Time Systems," IEEE Trans. on Computers,

tion is usually not allowed. To reduce the number of deadline- Aug. 1987,901-902.

missing transactions, however, preemption may need to be con- [Son88] Son. S. H., "Semantic Information and Consistency

sidered. The preemption decision in a real-time database system in Distributed Real-Time Systems," Informotion and

must be made very carefully, and as pointed out in [Stan8g], it Software Technology. Vol. 30, September 1988, pp
should not necessarily based only on relative deadlines. Since 443-449.
preemption implies not only that the work done by the Son88b Son. S. H.. "Real-Time Database Systems: Issues
preempted transaction must be undone. but also that later on. if and Approaches., ACM SIGMOD Record 17, 1.

restarted, must redo the work. The resultant delay and the Spia ACM on Re 17sems

wasted execution may cause one or both of these tansactions, Special Issue on Real-Time Database Systems,

as well as other transaction to miss the deadlines. Several March 1988.

approaches to designing scheduling algorithms for real-time [Son88cJ Son, S. H.. "A Message-Based Approach to Distri-

transactions have been proposed [Liu87, Stan88, Abb88]. but buted Database Prototyping." Fifth IEEE Workshop

their performance in distributed environments is not studied, on Real-Time Software and Operating Systemrs,

The prototyping environment described in this paper is an Washington. DC. May 1988, 71-74.
appropriate research vehicle for investigating such new tech- [Son89] Son. S. H. and A. Agrawala, "Distributed Check-

niques and scheduling algorithms for distributed real-time data- pointing for Globally Consistent States of Data-
base systems. bases," IEEE Transactions on Software Engineer.

ing. Vol. 15, No. 10, October 1989, 1157-1167.

[Son90] Son. S. H., "An Environment for Prototyping Real-
Time Distributed Databases," International Confer-

References ence on Systems Integration. Morristown, New Jer-

sey, April 1990.

[Abb88] Abbott, R. and H. Garcia-Molina. "Schedung [Stan88] Stankovic. J. and W. Zhao, "On Real-Time Transac-
Real-Time Transactions: A Performance Study," tions," ACM SIGMOD Record 17. 1. Special Issue
VLDB Conference, Sept. 1988, 1-12. on Real-Time Database Systems, March 1988, 4-18.

[Abb891 Abbott. R. and H. Garcia-Molina. "Scheduling [Tok89] Tokuda. H. and C. Mercer, 'ARTS: A Distributed
Real-Time Transactions with Disk Resident Data." Real-Time Kernel." .AC.f Operatng .Ssterm"
VLDB Conference. August 1989. Review. Vol. 23. No. 3, July 1Q89.

(Esw76] Eswaran, K. P. et al, "The Notion of Consistency (Wat881 Watson, P., "An Overview of Architectural Dtrec-
and Predicate Locks in a Database System." Comm. ions for Real-Time Distributed Systems.' Fm
of the ACM, Nov. 1976. 624-633. IEEE Workshop on Real-Time Software and Opera;.

[Gray8l] Gray, J. et al.. "A Straw Man Analysis of Probability ing Systems. Washington, DC. %Jay 1988, 59-65,

of Waiting and Deadlock." IBM Research Report,

RI 3066. 1981.

I
I

20.0} 200

Through t 16.0.
15.0. (data objectsecond)

12. deadline missing ratio 4

10.0 global/local)

4D (50% read-only
transactions)

5.0

O.c 0
0 4 8 12 16 20 24 0 2 4 6 8 10 12

Transaction size communication cost(delay)

Fig. 2 Transaction Throughput. Fig. 5 Deadline Missing Ratio

60. Percentage of ~
601 missed deadlines 81deadline missing(%1 804 (commdelay=0)

30,(global ceiling

20. 910 111-9______

20.

0 4 8 12 16 20 24 0
Transaction size 0 20 40 60 80 100

read-only transacnion(c%)
Fig. 3 Percentage of Deadline Missing Transactions.

12.0 glba ceiin

10.0 throughput ratio 80
(local/global) deadline missing(%)

8.0 (comm-delav=5)

6. :
comm-delay=l04

4.0

comm..Aelay=):cO e~n

0 20 40 60 80 100 T.Id-onlv trrnsactiont
read-only transactiorn %l)

Fig. 4 Transaction Throughput Ratio Fig, 6 Deadline Missing Transaction Pcncerntae

DISTRIBUTION LIST

1 - 6 Director
iNaval Rescarch Laboratory
Washington, DC 20375

Attention: Code 2627

7 - 18 Defense Technical Information Center, S47031
Building 5, Cameron Station
Alexandria, VA 22314

19 Dr. James G. Smith, Program Manager
Division of Applied Math and Computer Science
Code 1211
Office of Naval Research
800 N. Quincy Street
Arlington. VA 22217-5000

20 Dr. Gary Koob, Program Manager
Computer Science Division
Code 1133
Office of Naval Research
6t,00 N. Quincv Street
Arlington. VA 22217-5000

21 - 22 R. P. Cook, CS

23 S. H. Son, CS

24 A. K. Jones, CS

25 - 26 E. 11. Pancake, Clark Hall

27 SEAS Preaward Administration Files

28 Mr. Michael McCracken
Administrative Contracting Officer
Office of Naval Research Resident Representative
818 Connecticut Avenue
Eighth Floor
Washington, DC 20006

JO#34(8:j ime

I
I

